Adaptation of Employee Development with Artificial Intelligence Virual Reality in a Power Generation Company

Ali Imron, Muhammad Ramadhan Putra, Irwan Edi Syahputra, Iyus Darmawan PY, Amalia Rachmawati Nur Fadhilah

Abstract


Human resource development and training are essential to improve the quality and skill level of employees. The field of artificial intelligence focuses on developing the ability of computers to accomplish tasks that can currently be completed faster than humans can. To meet higher standards, Power Generation Companies are improving the quality of Virtual Reality (VR) images. VR can be used as a training medium. In addition, it can improve student understanding, information retention, and skills, and provide an immersive and deep learning experience. The purpose of this study is to determine the process of adaptation or application of AI VR in human resource development in the workplace, the contribution of development, and its utilization for work productivity, especially in the power plant company PT PLN Indonesia Power Suralaya banten province.. The method used is descriptive qualitative with a phenomenological approach to the adaptation of AI VR application by explaining the utilization, including the use of design, and AI VR procedures so that it can be adapted in the application of HR development effectively. Reputable national and international journals are used as references for the foundation of the development of this article. The adaptation results in different training modules for employees based on individual skills, job levels, job titles, and desired competencies. The AI tool can then match new projects with employees who have completed training together

Full Text:

PDF

References


Apriliana, S. D., & Nawangsari, E. R. (2021). Pelatihan dan pengembangan sumber daya manusia (sdm) berbasis kompetensi. Forum Ekonomi, 23(4), 804–812. https://doi.org/10.30872/jfor.v23i4.10155

Di Natale, A. F., Repetto, C., Riva, G., & Villani, D. (2020). Immersive virtual reality in K‐12 and higher education: A 10‐year systematic review of empirical research. British Journal of Educational Technology, 51(6), 200(51(6), 2006-2033.), 51(6), 2006-2033.

Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. Smart Learning Environments, 10(12), 1-26. https://doi.org/doi.org/10.1186/s40561-023-00231-3

Dr. Kurniawati. (2015). Peranan Strategis Pengembangan SDM dalam Manajemen SDM. Peranan Strategis Pengembangan SDM Dalam Manajemen SDM, 1–64.

Effendi, J. R., Lamsah, & Yulianti, F. (2021). Analisis Pengaruh Orientasi Dan Pelatihan Kerja Karyawan Pada Generasi Millenials Di Perusahaan Pt.Gam (Gramedia Asri Media). J Chem Phys, 35, 2210–2233.

Ekstrand, C., Jamal, A., Nguyen, R., Kudryk, A., Mann, J., & Mendez, I. (2018). Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: a randomized controlled study. Canadian Medical Association Open Access Journal, 6(1), E103-E109.

Gagné, M. (2018). From strategy to action: Transforming organizational goals into organizational behavior. International Journal of Management Reviews, 20, S83-S104. https://doi.org/https://doi.org/10.1111/ijmr.12159

Goralski, M. A., & Tan, T. K. . (2020). Artificial intelligence and sustainable development. The International Journal of Management Education, 18(1), 100330. https://doi.org/doi.org/10.1016/j.ijme.2019.100330

Gustiana, R., Hidayat, T., & Fauzi, A. (2022). Pelatihan Dan Pengembangan Sumber Daya Manusia ( Suatu Kajian Literatur Review Ilmu Manajemen Sumber Daya Manusia ). Jemsi, 3(6), 657–666.

Hadi, A. (2021). Penelitian kualitatif studi fenomenologi, case study, grounded theory, etnografi, biografi. CV. Pena Persada.

Himeur, Y., Rimal, B., Tiwary, A., & Amira, A. (2022). Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 86, 44-75. https://doi.org/https://doi.org/10.1016/j.inffus.2022.06.003

Imron, A., & Taswiyah, T. (2022). Green Human Resource Management Dalam Dunia Industri (Kajian Empiris Dan Teoritis Dalam Implementasi Green Hrm). Jurnal Inovasi Penelitian, 3(6), 6799-6806. https://doi.org/https://doi.org/10.47492/jip.v3i6.2147

Imron, A. (2021). Sosialisasi Gnnt Melalui Instrument Pembayaran Berbasis Qris Pada Umkm Dikota Serang. J-Abdi: Jurnal Pengabdian Kepada Masyarakat, 1(7), 1-9.

Jia, Q., Guo, Y., Li, R., Li, Y., & Chen, Y. (2018). A conceptual artificial intelligence application framework in human resource management. Proceedings of the International Conference on Electronic Business (ICEB), 2018-Decem, 106–114.

Lengnick-Hall, C. A., Beck, T. E., & Lengnick-Hall, M. L. (2011). Developing a capacity for organizational resilience through strategic human resource management. Human Resource Management Review, 21(3), 243-255. https://doi.org//10.1016/j.hrmr.2010.07.001

Makridakis, S. (2017). (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60. https://doi.org/https://doi.org/10.1016/j.futures.2017.03.006

Noe, R. A., Hollenbeck, J. R., Gerhart, B., & Wright, P. M. (2020). Fundamentals of human resource management. In The McGraw-Hill Companies, Inc.

Nurhayati, A., & Atmaja, H. E. (2021). Efektifitas program pelatihan dan pengembangan terhadap kinerja karyawan. Jebm, 18(1), 26–30.

Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192-210. https://doi.org/doi.org/10.5465/amr.2018.0072

Rajagopal, N. K., Qureshi, N. I., Durga, S., Ramirez Asis, E. H., Huerta

Soto, R. M., Gupta, S. K., & Deepak, S. (2022). Future of business culture: an artificial intelligence-driven digital framework for organization decision-making process. Complexity, 2022, 1-14., 2022, 1-14. https://doi.org/doi.org/10.1155/2022/7796507

Saputra, D., Haryani, Junaidi, A., Baidawi, T., & Surniandari, A. (2023). Application of K-mean clustering algorithm in grouping data prospective new students. AIP Conference Proceedings, 2714, Vol. 2714, No. 1. https://doi.org/10.1063/5.0128402

Sousa, M. J., & Rocha, Á. (2019). Skills for disruptive digital business. Journal of Business Research, 94, 257-263.

Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif dan R&D. PT Alfabeta.

Van de Vrande, V., De Jong, J. P., Vanhaverbeke, W., & De Rochemont, M. (2009). Open innovation in SMEs: Trends, motives and management challenges. Technovation, 29(6–7), 23-437. https://doi.org/https://doi.org/10.1016/j.technovation.2008.10.001

Van Giffen, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144, 93-106. https://doi.org/doi.org/10.1016/j.jbusres.2022.01.076

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924. https://doi.org/doi.org/10.1108/BPMJ-10-2019-0411

Xie, B., Liu, H., Alghofaili, R., Zhang, Y., Jiang, Y., Lobo, F. D., ... & Yu, L. F. (2021). A review on virtual reality skill training applications. Frontiers in Virtual Reality, 2, 645153.




DOI: https://doi.org/10.31294/widyacipta.v8i1.20342

Copyright (c) 2024 Ali Imron, M. Ramadhan P, Irwan Edi Syahputra L, Iyus Darmawan PY, Amalia Rachmawati NF

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License