Analisis Persepsi Publik Mengenai Resesi Ekonomi Global 2023 Sektor Bisnis di Media Sosial Twitter Menggunakan Algoritma Naïve Bayes dan Topic Modelling

Muhammad Alif Maghriby, Herry Irawan

Abstract


Penelitian ini bertujuan untuk mengetahui bagaimana kondisi sektor bisnis ketika resesi ekonomi global 2023 dengan mengidentifikasi persepsi positif dan negatif serta topik yang sering dibicarakan dari pengguna Twitter mengenai sektor bisnis ketika resesi ekonomi global 2023. Metode yang digunakan pada penelitian ini adalah metode kuantitatif dengan analisis sentimen menggunakan model Naïve Bayes dan Topic Modelling. Teknik pengumpulan data dilakukan dengan crawling data yang didapatkan dari media sosial Twitter pada 1 November 2022 hingga 30 November 2022. Data didapatkan sebanyak 7.542 tweets dan kemudian dilakukan pre-processing data yang kemudian menghasilkan 4.458 tweets yang siap dianalisis. Hasil penelitian menunjukkan terdapat 1.466 sentimen positif dan 2.992 sentimen negatif dengan model Naïve Bayes didapatkan nilai sebesar 97.84 persen accuracy, 94.03 persen precision, dan 100 persen recall. Informasi yang didapatkan dari hasil penelitian adalah pelaku UMKM tidak perlu cemas akan terkena dampak resesi ekonomi justru UMKM menjadi solusi dalam melawan resesi ekonomi. Kemudian, tingkat bunga hipotek di Eropa lebih tinggi daripada tingkat suku bunga KPR di Indonesia. Depresiasi mata uang yang terjadi memiliki sisi positif yang mana ketika depresiasi mata uang terjadi para pengusaha dapat meningkatkan ekspor karena barang dan jasanya lebih murah di pasar internasional.



This study aims to find out how the business sector is in the 2023 global economic recession by identifying positive and negative perceptions and topics that are often discussed by Twitter users regarding the business sector during the 2023 global economic recession. The method used in this study is a quantitative method with sentiment analysis using the Naïve Bayes and Topic Modeling models. The data collection technique was carried out by crawling data obtained from social media Twitter from November 1, 2022, to November 30, 2022. Data were obtained from 7,542 tweets and then data pre-processing was carried out, producing 4,458 tweets that were ready to be analyzed. The results showed that there were 1,466 positive sentiments and 2,992 negative sentiments with the Naïve Bayes model obtaining values of 97.84 percent accuracy, 94.03 percent precision, and 100 percent recall. The information obtained from the research results is that MSME actors do not need to worry about being affected by the economic recession MSMEs are the solution to fighting the economic recession. Then, mortgage interest rates in Europe are higher than mortgage interest rates in Indonesia. Currency depreciation occurs has a positive side where when currency depreciation occurs entrepreneurs can increase exports because their goods and services are cheaper on international markets.


Full Text:

PDF

References


Alfarizi, M. K. (2022). Mulai Jokowi, Sri Mulyani hingga Bos IMF Berpesan Soal Resesi, Apa Benang Merahnya. Bisnis Tempo, 1.

Arsyam, M. (2020). Diktat Manajemen Pendidikan Islam. 13 hlm.

Balcılar, M. (2020). COVID-19 Recession: The Global Economy in Crisis. International Conference on Eurasian Economies 2020, April, 1–8. https://doi.org/10.36880/c12.02467

Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A Novel Selective Naïve Bayes Algorithm. Knowledge-Based Systems, 192. https://doi.org/https://doi.org/10.1016/j.knosys.2019.105361

Cossiga, G. A. (2019). A World in The Balance: The Economy Towards Recession. Review of European Studies, 11(3), 50. https://doi.org/10.5539/res.v11n3p50

Dehariya, H., Sharma, A. K., & Tiwari, C. (2018). An Initial Imperative Study On Big Data. Global Journal Of Engineering Science And Research, 90–94. https://doi.org/10.5281/zenodo.1288445

Ede, C. I., Masuku, M. M., & Jili, N. N. (2021). Implications of COVID-19 Lockdown on South African Business Sector. International Journal of Financial Research, 12(4), 12. https://doi.org/10.5430/ijfr.v12n4p12

Edelia, A., & Aslami, N. (2022). The Role of Empowerment of The Cooperative and MSME Office in The Development of Small and Medium Micro Enterprises in Medan City. MARGINAL : Journal Of Management, Accounting, General Finance And International Economic Issues, 1(3), 31–36. https://doi.org/https://doi.org/10.55047/marginal.v1i3.163

Eltoum, A. M., Yatiban, A., Omar, R., & Islam, R. (2022). Sustainability Awareness in Society and Its Impact on The Level of Responsible Business Adoption in The Business Sector of Dubai. Problems and Perspectives in Management, 20(3), 540–551. https://doi.org/10.21511/ppm.20(3).2022.43

Fathina, H. (2022). Apa itu Resesi? Ini Pengertian, Penyabab, dan Dampaknya. Ekonomi Bisnis.

Fousteris, A. E., Didaskalou, E. A., Tsogas, M. M. H., & Georgakellos, D. A. (2018). The Environmental Strategy of Businesses as an Option Under Recession in Greece. Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124399

Friedline, T., Chen, Z., & Morrow, S. P. (2021). Families’ Financial Stress & Well-Being: The Importance of the Economy and Economic Environments. In Journal of Family and Economic Issues (Vol. 42). https://doi.org/10.1007/s10834-020-09694-9

Gu, J., & Lu, S. (2021). An Effective Intrusion Detection Approach Using SVM with Naïve Bayes Feature Embedding. Computers & Security, 103.

Irawan, H., Akmalia, G., & Masrury, R. A. (2019). Mining Tourist’s Perception Toward Indonesia Tourism Destination Using Sentiment Analysis and Topic Modelling. Association for Computing Machinery International Conference Proceeding Series, September, 7–12. https://doi.org/10.1145/3361821.3361829

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet Allocation (LDA) and Topic Modeling: Models, Applications, a Survey. Multimedia Tools and Applications, 78(11), 15169–15211. https://doi.org/10.1007/s11042-018-6894-4

Jukka, T. (2021). Does Business Strategy and Management Control System Fit Determine Performance? International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-11-2020-0584

Kaila, R.P. & Prasad, A. V. K. (2020). Informational Flow on Twitter - Corona Virus Outbreak – Topic. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(3), 128–134.

Liu, J., Li, T., Xie, P., Du, S., Teng, F., & Yang, X. (2020). Urban Big Data Fusion Based on Deep Learning: An Overview. Information Fusion, 53(June 2019), 123–133. https://doi.org/10.1016/j.inffus.2019.06.016

Miao, J., & Zhu, W. (2020). Precision–Recall Curve (PRC) Classification Trees. Evolutionary Intelligence, 15(3), 1545–1569. https://doi.org/10.1007/s12065-021-00565-2

Muhaddisi, A., Prastowo, B. N., Utami, D., & Putri, K. (2021). Sentiment Analysis With Sarcasm Detection On Politician’s Instagram. 15(4), 349–358.

Naryono, E. (2020). Impact of National Disaster Covid-19, Indonesia Towards Economic Recession. 1–10. https://doi.org/10.31219/osf.io/5cj3d

Rafie, B. T. (2022). Inilah Dampak Kenaikan Suku Bunga BI Sebesar 50 Bps Terhadap Ekonomi Indonesia. Kontan, 1.

Rahayu, I. R. S. (2022). 5 Dampak Kenaikan Suku Bunga Acuan BI Terhadap Masyarakat. Kompas, 1.

Rahim, E., & Mohamad, R. (2021). Strategi Bauran Pemasaran ( Marketing Mix ) Dalam Perspektif Syariah. Mutawazin (Jurnal Ekonomi Syariah), 2(1), 15–26. https://doi.org/10.54045/mutawazin.v2i1.234

Ranjan, N. M., & Prasad, R. S. (2021). Text Analytics: An Application of Text Mining. Journal of Data Mining and Management, 6(3), 1–6. https://doi.org/10.46610/jodmm.2021.v06i03.001

Seo, H. J., & Hong, A. J. (2022). Safety Engagement in The Workplace: Text Mining Analysis. Safety, 8(2). https://doi.org/10.3390/safety8020024

Soroushyar, A. (2022). Auditor Characteristics and The Financial Reporting Quality: The Moderating Role of The Client Business Strategy. Asian Journal of Accounting Research. https://doi.org/10.1108/AJAR-01-2022-0020

Stockemer, D. (2019). Theories, Concepts, Variables, and Hypothesis. In Quantitative Methods for the Social Sciences. Springer.

Susan, E. (2019). Manajemen Sumber Daya Manusia. Jurnal Manajemen Pendidikan, 9(2), 952–962.

Wang, Q. (2022). Currency Depreciation is Happening Across Asia, Says Economist. CNBC.

Warsela, M., Wahyudi, A. D., & Sulistiyawati, A. (2021). Penerapan Customer Relationship Management Untuk Mendukung Marketing Credit Executive (Studi Kasus: PT FIF Group). Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 78.

Xu, J., Zhang, Y., & Miao, D. (2020). Three-Way Confusion Matrix for Classification: A Measure Driven View. Information Sciences, 507, 772–794. https://doi.org/10.1016/j.ins.2019.06.064

Zhao, T., Du, J., Xu, Z., Li, A., & Guan, Z. (2022). Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with DeBERTa. 1–12.




DOI: https://doi.org/10.31294/widyacipta.v7i2.15577

Copyright (c) 2023 Muhammad Alif Maghriby, Herry Irawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License