PENERAPAN ALGORITMA NAÏVE BAYES UNTUK PENENTUAN CALON PENERIMA BEASISWA PADA SMK PASIM PLUS SUKABUMI

Rizal Amegia Saputra, Shinta Ayuningtias

Abstract


Every institution in particular school lots of scholarship devoted to students, whether or not capable of achieving good results. The scholarship is intended to help ease the burden of costs for students who get it. With a large number of students who apply to receive scholarships and criteria of assessment that much anyway, so not all students who apply for scholarships can be granted. SMK Pasim Plus Sukabumi does not yet have a system which can assist in the determination of scholarship recipients more effectively and efficiently. The Naïve Bayes algorithm method is expected to be able to assist in the determination of the prospective grantee. Naïve Bayes algorithm is one method of data mining contains ten classification data mining is most popular among the other algorithm-the algorithm. Naïve Bayes method also assessed potential both in classifying documents than other classification methods in terms of accuracy and computational efficiency. From the test results by measuring the performance of the naïve Bayes algorithm using the method of testing the Confusion Matrix and ROC Curve, the naïve Bayes algorithm is known that have Accuracy namely 96.67% by value of the AUC that is 0.990. See the value of the naïve Bayes algorithm AUC the naïve Bayes algorithm, then include the group classification is very good, because the results of his AUC values between 0.90-1.00. naïve Bayes algorithm for it is expected to produce a decent Scholarship candidates, so that the school can help in taking decisions more quickly, more effectively and efficiently..

References


Aditya, A. N. (2011). Jago PHP & MySQL. Bekasi: Dunia Komputer.

Azis, S. (2013). Gampang & Gratis Membuat Website:Untuk Web Personal. Jakarta Pusat: Kunci Komunikasi.

Dika, H. (2015). Kajian Perancangan Rule Kenaikan Gaji Pada PT. ABC . Simetris, 219.

Ellitan, L., & Anatan, L. (2007). Sistem Informasi Manajemen: Konsep dan Praktis. Bandung: Alfabeta, CV.

Gunawan, Kesuma, R. P., & Wigati, R. R. (2013). Pengembangan Sistem Penunjang Keputusan Penentuan Pemberian Beasiswa Tingkat Sekolah. JSM STMIK Mikroskil.

MADCOMS. (2009). Adobe Dreamweaver CS4. Yogyakarta: Penerbit ANDI. Priyadharsini, C., & Thanamani, A. S.(2014). An Overview of Knowledge Discovery Database and Data Mining Technique. IJIRCCE, 1572., 2012.

Putra, A., & Hardiyanti, D. Y. (2011).Penentuan Penerima Beasiswa DenganMenggunakan FuzzyMultiple AtributeDecission Making. JSI, 287.2009.

Rosa, S. A., & Shalahudin, M. (2013).Rekayasa Perangkat Lunak.Bandung: Informatika.

Saleh, A. (2015). Implementasi MetodeKlasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan ListrikRumah Tangga. Citec Journal, 209.

Saputra, R. A. (2014). Penerapan AlgoritmaNaive Bayes Untuk Prediksi PenyakitTuberculosis. Swabumi, 19.

Sihotang, F. (2013). Sistem PendukungKeputusan Penerima BeasiswaDengan Metode TOPSIS.Pelita Informatika Budi Darma, 6.

Swastika, W. (2006). PHP 5 & MySQL 4.Jakarta: Dian Rakyat.

Syahrizal, M. (2012). Perancangan Sistem Aplikasi Pembuatan Roster Mata KuliahPada Perguruan Tinggi.

Wajhillah, R. (2015). Optimasi Algoritma Klasifikasi C4.5 Berbasis Particle Swarm Optimization UntukPrediksi Penyakit Jantung. Swabumi, 27.

Wasiati, H., & Wijayanti, D. (2014).Sistem Pendukung Keputusan PenentuanKelayakan Calon Tenaga Kerja IndonesiaMenggunakan Naive Bayes. IJNS, 45.

Widodo, P. P., & Herlawati. (2011).Menggunakan UML. Bandung:Informatika. Widodo, P. P., Handayanto, R. T., &Herlawati. (2013). Penerapan Data MiningDengan Matlab. Bandung: Rekayasa Sains.

Yakub. (2008). Sistem Basis Data TutorialKonseptual. Yogyakarta: Graha Ilmu.




DOI: https://doi.org/10.31294/swabumi.v4i2.5401

INDEXING

 

 

 

    P-ISSN : 2355-990X                       E-ISSN: 2549-5178

                     

 

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License