Implementasi Algoritma Artificial Neural Network dengan Aktivasi ReLU: Klasifikasi Tiroid

Lestari Yusuf, Taufik Hidayatulloh

Abstract


Kelenjar tiroid yang memiliki peran penting dalam tubuh sebagai zat yang mempengaruhi metabolisme termasuk kedalam bidang endokrinologi. Terdapat 22.368 kasus kematian di Amerika serikat yang diakibatkan kanker tiroid. Angka kematian tersebut harus terus ditekan agar tingkat kematian yang disebabkan oleh kelainan tiroid bisa berkurang. Satu diantara cara penekanan angka kematian tersebut bisa menggunakan perkembangan tekhnologi. Algoritma datamining yang menjadi metode pembelajaran sebuah data dalam mengenali pola yang kompleks dari bigdata dan juga beragam dalam pengambilan keputusan dalam dunia klinis adalah algoritma artificial neural network. Pada penelitian ini penulisakan membuat klasifikasi penderita tiroid yang bisa kambuh atau tidak dan mengetahui factor apa saja yang berhubungan dengan kesembuhan pasien kelainan tiroid penelitian ini menggunakan model algoritma Artificial neural network dengan aktivasi ReLU. Penelitian ini menggunakan thyroid yang merupakan data sekunder dari kaggle.com. sebanyak 383 data pada perhitungannya data dibagi kedalah data latih dan data uji sebesar 80-20. Data latih sebanyak 306 data dan data uji sebanyak 77 data. Perhitungan model ANN dengan aktivasi ReLU ini menghasilkan akurasi sebesar 0.961 dengan nilai AUC sebesar 0.99 yang berarti model ANN memiliki kinerja sangat baik untuk digunakan.

 

The thyroid gland, which has an important role in the body as a substance that affects metabolism, is included in the field of endocrinology. There are 22,368 cases of death in the United States caused by thyroid cancer. The death rate must continue to be suppressed so that the death rate caused by thyroid disorders can be reduced. One of the ways to reduce the mortality rate is by using technological developments. The data mining algorithm which is a method of learning data in recognizing complex patterns from big data and also a variety of decision making in the clinical world is the artificial neural network algorithm. In this study, the authors will classify thyroid patients who can relapse or not and find out what factors are associated with the recovery of thyroid disorder patients this study uses the Artificial neural network algorithm model with ReLU activation. This study uses thyroid which is secondary data from kaggle.com as much as 383 data in the calculation of the data is divided into training data and test data by 80-20. Training data is 306 data and test data is 77 data. The calculation of the ANN model with ReLU activation produces an accuracy of 0.961 with an AUC value of 0.99, which means that the ANN model has very good performance for use.


References


Ariawan, W. E., Made, I., & Putra, A. W. (2022b). Sistem Pakar Mendiagnosa Penyakit Tiroid Menggunakan Metode Certainty Factor Berbasis Web. Jurnal Sutasoma. https://s.id/jurnalsutasoma

Beynon, M. E., & Pinneri, K. (2016). An Overview of the Thyroid Gland and Thyroid-Related Deaths for the Forensic Pathologist. In Academic Forensic Pathology (Vol. 6, Issue 2, pp. 217–236). SAGE Publications Inc. https://doi.org/10.23907/2016.024

Hassan, C., Balsamo, G., Lorenzetti, R., Zullo, A., & Antonelli, G. (2022). Artificial Intelligence Allows Leaving-In-Situ Colorectal Polyps. Clinical Gastroenterology and Hepatology, 20(11), 2505-2513.e4. https://doi.org/10.1016/j.cgh.2022.04.045

Monaco, F. (2003). Clinical perspective: Classification of thyroid diseases: Suggestions for a revision. In Journal of Clinical Endocrinology and Metabolism (Vol. 88, Issue 4, pp. 1428–1432). https://doi.org/10.1210/jc.2002-021260

Prabowo, R., Heningtyas, Y., Yusman, M., Iqbal, M., Dwi, O., Wulansari, E., Ilmu, J., Lampung, U., & Matematika, J. (2021). Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network. In Jurnal Komputasi (Vol. 9, Issue 2).

Purwitasari, N. A., & Soleh, M. (2022). Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Processing (Implementation Of Artificial Neural Network Algorithm In Chatbot Development Using Natural Language Processing Approach).

VanderPlas, J. (2017). Python Data Science Handbook. www.allitebooks.com

Wang, S., & Summers, R. M. (2012). Machine learning and radiology. In Medical Image Analysis (Vol. 16, Issue 5, pp. 933–951). https://doi.org/10.1016/j.media.2012.02.005

Wichmann, J. L., Willemink, M. J., & De Cecco, C. N. (2020). Artificial Intelligence and Machine Learning in Radiology: Current State and Considerations for Routine Clinical Implementation. In Investigative Radiology (Vol. 55, Issue 9, pp. 619–627). Lippincott Williams and Wilkins. https://doi.org/10.1097/RLI.0000000000000673

Yusuf, L., & Hidayatulloh, T. (2024). Laporan Penelitian: Implementasi Algoritma Artificial Neural Network dengan Aktivasi ReLU (Klasifikasi Tiroid).

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2019). Unet++: A nested u-net architecture for medical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11045 LNCS, 3–11. https://doi.org/10.1007/978-3-030-00889-5_1




DOI: https://doi.org/10.31294/swabumi.v12i1.23020

INDEXING

 

 

 

    P-ISSN : 2355-990X                       E-ISSN: 2549-5178

                     

 

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License