Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest

Marchell Rianto, Roni Yunis

Abstract


Admission of new students is an important process in educational institutions such as tertiary institutions which is useful for screening accepted prospective students according to the criteria determined by the college. The purpose of this study is to predict the number of new students using the Random Forest model with the new student admissions dataset of XYZ University. The Random Forest Model is a machine learning algorithm that is excellent at solving classification and regression problems. Based on the research results, it was found that the resulting model has an accuracy rate of 99.8% with MSE and MAE values of 0.02% in predicting new students. The best parameter of the model with a maxnodes value of 100 and ntree 900 and a decreasing trend in the number of students for the next few years.

Keywords


random forest, jumlah mahasiswa baru, MSE, MAE

Full Text:

PDF

References


Accenture. (2018). Business Analysis in the Data Science Age. IIBA.

Aji Haristu, R. (2019). Penerapan Metode Random Forest untuk prediksi win ratio Pemain PUBG. In Prodi TI USD Yogyakarta (Issue 21 (1193)).

Analytics, P. (2018). How to implement Random Forests in R. Rbloggers. https://www.r-bloggers.com/2018/01/how-to-implement-random-forests-in-r/

Brownlee, J. (2020). How To Work Through A Problem Like A Data Scientist. Machine Learning Mastery.

Coghlan, A. (2018). A Little Book of R For Time Series. Release 0.2. 75.

Eka Chandra, N., & Sarinem. (2015). Peramalan Penyebaran Jumlah Kasus Virus Ebola Di Guinea Dengan Metode Arima. UJMC, 2(November), 28–35.

Interviewsqs. (2019). 11 websites to find free, interesting datasets. Interviewqs.Com. https://www.interviewqs.com/blog/free_online_data_sets

Karmita, S., Putra, A. B. W., Gaffar, A. F. O., & Wiguna, A. S. (2019). Prediksi Jumlah Calon Mahasiswa Baru Menggunakan Fuzzy Time Series-Time Invariant. Prosiding SAKTI (Seminar Ilmu Komputer Dan Teknologi Informasi), 3(1), 208–214.

Kenton, W. (2020). What Is a Time Series? 31 Maret.

LTMPT. (2020). Prinsip Penerimaan Mahasiswa Baru. https://ltmpt.ac.id/?mid=10

Muhammad, M., Harjono, & Akhsani, L. (2017). Peramalan Mahasiswa Baru Ft Dan Fkip Um Purwokerto Dengan Model ArimA 1Malim. 18(2), 123–132.

Riadi, M. (2017). Pengertian, Fungsi dan Jenis-Jenis Peramalan (Forecasting). 14 November.

Services, E. E. (2018). Data Science and Big Data Analytics. John Wiley.

SHARMA, M. (2018). Data Cleaning Using R. Dataanalyticsedge.Com. http://dataanalyticsedge.com/2018/05/02/data-cleaning-using-r




DOI: https://doi.org/10.31294/p.v23i1.9781

Copyright (c) 2021 Marchell Rianto, Roni Yunis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
https://jpc.unik-kediri.ac.id/slot-pulsa/ http://cbtdikpora2.bantulkab.go.id/slot-maxwin/ https://kotasehat.depok.go.id/-/slot-pulsa/ https://kotasehat.depok.go.id/-/slot-gacor/ https://kotasehat.depok.go.id/-/slot-gopay/ https://smkppnmataram.distanbun.ntbprov.go.id/-/slot-kamboja/ https://smkppnmataram.distanbun.ntbprov.go.id/-/slot-deposit-pulsa/ https://ebphtb.karimunkab.go.id/log/slot4d/ https://ebphtb.karimunkab.go.id/log/bandar-togel/ http://conference.fortei.unp.ac.id/public/slot-dana/ http://conference.fortei.unp.ac.id/public/slot88/ https://diskop.ntbprov.go.id/.tmb/slot-pulsa/ https://diskop.ntbprov.go.id/.tmb/slot-hoki/ https://simasn.malutprov.go.id/vendor/slot-bonus/ https://simasn.malutprov.go.id/vendor/slot-thailand/ https://asnunggul.lan.go.id/assets/components/components1/ https://asnunggul.lan.go.id/assets/components/components2/ sundaempire787 Poskobet