Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani

Hendrawan Hendrawan, Abdul Haris, Errissya Rasywir, Yovi Pratama

Abstract


Like most plantation plants in general, rubber can be attacked by various diseases originating from fungi, pests, animals and even cancer cells. For that we need a method capable of diagnosing rubber disease. In previous research related to the diagnosis of plant diseases, among others, using the Dempster Shafer method, the Certainty factor method and forward chaining. This study developed an analysis of the results of the diagnosis of rubber plant disease using the Mamdany Fuzzy method. The choice of this method departs from research on fuzzy mamdany which states that the fuzzy mamdany method is able to resemble the intuitive way the human brain works. It is hoped that with this method, the diagnosis of rubber plant disease can help farmers detect symptoms earlier so that the productivity of rubber plantation products can be achieved. increased. This study used rubber plant disease data from the Jambi Provincial Plantation Office in Jambi City. From the results of calculations carried out in diagnosing rubber plant disease, as many as 161 rubber plant object data were equipped with 33 symptom identities and a diagnosis from plantation data, then tested 60 rubber plant data without a diagnostic label, we obtained an accuracy value of 81.28%. Likewise, testing by randomizing training data with Cross Validation obtained close results.


Keywords


Fuzzy, Mamdani, Evaluasi, Diagnosis

Full Text:

PDF

References


Fajri, R. I. (2014). Identifikasi Penyakit Daun Tanaman Kelapa Sawit Menggunakan Support Vector Machine. Jurnal Teknologi Perkebunan. Retrieved from http://repository.usu.ac.id/handle/123456789/42256

Filie, & Kusuma, M. (2011). Sistem Pakar Untuk Mendiagnosa Penyakit Pada Tanaman Karet Dan Cara Penanggulangannya.

Hayadi, B. H., & Setiawan, A. (2016). Sistem Berbasis Pengetahuan Dengan Menggunakan Fuzzy Tsukamoto (Untuk Kesehatan Dan Perawatan Bayi). Seminar Nasional Teknologi Informasi Dan Komunikasi 2016, 2016(Sentika), 18–19.

Kamsyakawuni, A., Gernowo, R., & Sarwoko, E. A. (2012). Aplikasi Sistem Pakar untuk Diagnosa Penyakit Hipertiroid dengan Metode Inferensi Fuzzy Mamdani. Jurnal Sistem Informasi Bisnis, 2(2), 58–66. https://doi.org/10.21456/vol2iss2pp058-066

Kaur, A., & Kaur, A. (2012). Comparison of Mamdani-Type and Sugeno-Type Fuzzy Inference Systems for Air Conditioning System. International Journal of Soft Computing & Engineering, 2(2), 323–325. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.1238&rep=rep1&type=pdf

Mahua, M. S. (2018). SISTEM PAKAR UNTUK MENDIAGNOSIS PENYAKIT TANAMAN JERUK ( LIMAU ) MENGGUNAKAN METODE BAYES. JATI (Jurnal Mahasiswa Teknik Informatika), 2(2), 196–202.

Maulana, Rizky, J., Fitriyadi, & Fitriani, R. (2017). Sistem Pakar Diagnosa Penyakit Tanaman Karet. JUTISI, 1(3), 67–70.

Mustaqim, K. (2013). Aplikasi Sistem Pakar Untuk Diagnosa Hama dan Penyakit Tanaman Kelapa Sawit Menggunakan Naive Bayes( STUDY KASUS : PT . Perkebunan Nusantara V ).

Nurhatika, S. (2013). Sistem Pakar Untuk Mendiagnosis Penyakit Tanaman Kelapa Sawit.

Sidauruk, A., & Pujianto, A. (2017). Sistem Pakar Diagnosa Penyakit Tanaman Kelapa Sawit menggunakan Teorema Bayes. Jurnal Ilmiah Data Manajemen Dan Teknologi Informasi, 18(maret).

Sumitre, M., Kurniawan, R., Informatika, J., & Alam, J. Z. A. P. (2014). Rancang Bangun Sistem Pendukung Keputusan Seleksi Penerimaan Tenaga Pengajar Dengan Metode Fuzzy Inference System (Fis) Mamdani. Jurnal Informatika Darmajaya, 14(1), 61–71. https://doi.org/10.30873/ji.v14i1.512




DOI: https://doi.org/10.31294/p.v22i2.8909

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License