PENENTUAN NILAI KREDIT DENGAN ALGORITMA KLASIFIKASI SUPPORT VECTOR MACHINE BERBASIS PARTICLE SWARM OPTIMIZATION
Abstract
Full Text:
PDFReferences
Ahmad Ghodselahi (2011).A Hybrid Support Vector Machine Ensemble Model for Credit Scoring. International Journal of Computer Applications (0975 – 8887)
Aydin, I., Karakose, M., & Akin, E. (2011). A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Journal Applied Soft Computing, 11, 120-129. [3] Abraham, A., Grosan, C., Ramos, V., (2006). Swarm Intelligence in Data Mining. Springer-Verlag Berlin Heidelberg.
Bellotti, T., & Crook, J. (2007) Support vector machines for credit scoring and discovery of significant features. Expert System with Application: An International Journal, 36, 3302-3308.
Dawson, C. W. (2009). Projects in Computing and Information System A Student's Guide. England: Addison-Wesley.
Gorunescu, Florin (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer.
Hian, C.K., Wei, C.T., & Chwee, P.G (2006). A Two-step Method to Construct Credit Scoring Models with Data Mining Techniques. International Journal of Business and Information, 1, 96-118.
Han, J., & Kamber, M. (2006). Data Mining Concepts and technique. San Francisco: Diane Cerra
Jianguo, Z., & Tao, B. (2008). Credit Risk Assessment using Rough Set Theor and GA-based SVM. The 3rd International Conference on Grid and Pervasive Computing, 320-325.
(2004). Keputusan Mentri Negara Koperasi dan Usaha Kecil Menengah Republik Indonesia. Tentang petunjuk pelaksanaan kegiatan usaha koperasi jasa keuangan syariah. No 91
Larose, D. T. (2005).Discovering Knowledge in Data. New Jersey: John Willey & Sons, Inc.
Ming-hui.J., & Xu-chuang, Y. (2007). Construction and Application of PSO-SVM Model for Personal Credit Scoring. ICCS '07 Proceedings of the 7th international conference on Computational Science,158-161.
Mingyuan, Z., Chong, F., Luping, J., Mingtian, Z. (2011). Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications: An International Journal, 38, 5197-5204.
Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook (2nd ed). New York: Springer Dordrecht Heidelberg London
Ping, Y. (2009). Feature selection based on SVM for credit scoring. International. Conference on Computational Intelligence and Natural Computing, 2, 44-47.
Rivai, V., & Veithzal, A.P. (2006). Credit Management Handbook. Jakarta: Raja GrafindoPersada.
Pressman, Roger.S. (2001)."Software Engineering : A Practioner's Approach." 5th McGrawHill.
Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.
Satsiou, A.,Doumpos, M., & Zopounidis, C. (2007) Genetic Algorithms for the Optimization of Support Vector Machines in Credit Risk Rating. Technical University of Crete Dept. of Production Engineering and Management Financial Engineering Laboratory.
Shuzhou, W., & Bo, M. (2011). Parameter Selection Algorithm for Support Vector Machine. Procedia Environmental Sciences, 11, 538-544.
UndangUndang Perbankan No.10 Tahun 1998.
UndangUndang Usaha Kecil No.9 Tahun 1995.
Vercellis, Carlo (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.
Witten, I. H., Frank, E., & Hall, M. A. (2011).Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.
Wei, X., Shenghu, Z., Dongmei, D. & Yanhui, C.(2010). A Support Vector Machine Based Method For Credit Risk Assessment. IEEE 7th International Conference on e-Business Engineering, 50-55.
Yun, L., Qiu-yan, C. & Hua, Z. (2011). Application of the PSO-SVM model for Credit Scoring. Seventh International Conference on Computational Intelligence and Security, 47-51.
DOI: https://doi.org/10.31294/p.v18i1.870
Copyright (c) 2016 Ella Nurelasari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2579-3500