Integrasi SMOTE Dan Ensemble AdaBoost Untuk Mengatasi Imbalance Class Pada Data Bank Direct Marketing
Abstract
Full Text:
PDF (Bahasa Indonesia)References
Abbas, S. (2015). Deposit subscribe Prediction using Data Mining Techniques based Real Marketing Dataset. International Journal of Computer Applications, 110(3), 1–7. https://doi.org/10.5120/19293-0725
Anam, C., & Santoso, H. B. (2018). Perbandingan Kinerja Algoritma C4 . 5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa. Jurnal Ilmiah Ilmu-Ilmu Teknik, 8(1), 13–19.
Ardiansyah Sembiring, M., Fitri Larasati Sibuea, M., Sapta, A., Studi Sistem Informasi, P., & Royal, S. (2018). Analisa Kinerja Algoritma C.45 Dalam Memprediksi Hasil Belajar. Journal of Science and Social Research, 1(February), 73–79. Retrieved from http://jurnal.goretanpena.com/index.php/JSSR
Asare-Frempong, J., & Jayabalan, M. (2017). Predicting customer response to bank direct telemarketing campaign. 2017 International Conference on Engineering Technology and Technopreneurship, ICE2T 2017, 2017-Janua, 1–4. https://doi.org/10.1109/ICE2T.2017.8215961
Bisri, A. (2015). Penerapan Adaboost untuk Penyelesaian Ketidakseimbangan Kelas pada Penentuan Kelulusan Mahasiswa dengan Metode Decision Tree. 1(1).
Lawi, A., Velayaty, A. A., & Zainuddin, Z. (2018). On identifying potential direct marketing consumers using adaptive boosted support vector machine. Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, 2018-Janua, 1–4. https://doi.org/10.1109/CAIPT.2017.8320691
Lin, L., Yang, S., & Zuo, R. (2010). Protein secondary structure prediction based on multi-SVM ensemble. Proceedings of 2010 International Conference on Intelligent Control and Information Processing, ICICIP 2010, (PART 2), 356–358. https://doi.org/10.1109/ICICIP.2010.5564201
Liu, H., Tian, H. Q., Li, Y. F., & Zhang, L. (2015). Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions. Energy Conversion and Management, 92, 67–81. https://doi.org/10.1016/j.enconman.2014.12.053
Mitik, M., Korkmaz, O., Karagoz, P., Toroslu, I. H., & Yucel, F. (2017). Data Mining Based Product Marketing Technique for Banking Products. IEEE International Conference on Data Mining Workshops, ICDMW, 552–559. https://doi.org/10.1109/ICDMW.2016.0085
Moro, S., Laureano, R. M. S., & Cortez, P. (2011). Using Data Mining for Bank Direct Marketing: An application of the CRISP-DM methodology. 25th European Simulation and Modelling Conference- ESM’2011, (Figure 1), 117–121.
Nurzahputra, A., & Muslim, M. A. (2017). Peningkatan Akurasi Pada Algoritma C4.5 Menggunakan Adaboost Untuk Meminimalkan Resiko Kredit. Prosiding SNATIF Ke-4, (1), 243–247.
Perbankan, I., & No, J. G. (2016). Metode Klasifikasi Data Mining dan Teknik Sampling Smote ... (Hairani dkk.). 168–172.
Putri, S. A. (2015). Integrasi SMOTE dan Information Gain pada Naive Bayes untuk Prediksi Cacat Software. 1(2).
Ruangthong, P., & Jaiyen, S. (2015). Bank direct marketing analysis of asymmetric information based on machine learning. Proceedings of the 2015 12th International Joint Conference on Computer Science and Software Engineering, JCSSE 2015, 93–96. https://doi.org/10.1109/JCSSE.2015.7219777
Terhadap, S., Tidak, D., Pada, S., Model, P., & Jamu, K. (2013). PENERAPAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE. 1(1).
DOI: https://doi.org/10.31294/ji.v6i2.6186
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Informatika
This work is licensed under a Creative Commons Attribution 4.0 International License.
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License