ANALISA KEPARAUAN PENDERITA PITA SUARA MELALUI JARINGAN SELULER DENGAN METODE TRANSFORMASI WAVELET
Abstract
Abstract - Hoarseness is a general term of perceived laryngeal vocal cord disorder. If late diagnosis and examination by ENT (Ear, Nose Throat) specialist is happened, one can damage the vocal cords permanently and in some case even cause death. Currently, diagnostic by ENT specialists is done by entering the elastic optical cable (laryngoscopy) into the throat because they are invasive, causing discomfort to the patient. In this research, to overcome mentioned problem and the fact that ENT specialists and laryngoscopy is rare, non-invasive diagnosis procedure through selular network is proposed as an alternative by means of voice signal processing using wavelet transform. The bases chosen is Daubechies to minimize error of the decomposed and reconstructed signal. Data acquisition was conducted by direct recording the voice of healthy respondents hoarse-illness patient in the Audiology room (DoubleWalled-sound-attenuated booth) that converted to digital domain using DAC audio with sampling frequency 44,1 kHz. The results of the experiment, for 27 datas of direct voice recorded in dr.Soetomo Hospital, Daubechies wavelet speech analysis technique can find out the feature of vocal cord disorder. In the recording through a selular network, normal voice is as same as ill voice characteristics because of channel noise.
Keywords : Vocal cord disorder, selular network, wavelet transform
Abstrak - Suara parau adalah salah satu gejala dari suatu penyakit yang umumnya berhubungan dengan gangguan pita suara pada tenggorokan. Keterlambatan diagnosa dan penanganan oleh dokter ahli dapat menyebabkan kerusakan pada organ pita suara menjadi permanen hingga kematian. Saat ini, penegakan diagnosa bagi dokter spesialis THT dilaksanakan dengan memasukkan kabel optis elastis (laringoskopi) ke tenggorok sehingga menimbulkan ketidaknyamanan pada pasien. Untuk mengatasi masalah langkanya dokter spesialis terlatih dan laringoskopi, diusulkan teknik deteksi dini penyakit kelainan pita suara non-invasif melalui jaringan seluler dengan analisa sinyal suara menggunakan transformasi wavelet. Basis yang dipilih adalah Daubechies untuk meminimalkan galat dekomposisi-rekonstruksi. Pengambilan data dilakukan dengan perekaman langsung pada naracoba normal dan pasien dalam ruang kedap yang dikonversi ke ranah dijital memakai audio DAC dengan frekuensi sampling 44.1 kHz. Hasilnya pada 27 suara langsung responden yang diperoleh di RSUD dr. Soetomo, dengan menggunakan analisa wavelet Daubechies telah dapat ditentukan feature kelainan pita suara yang oleh pasien. Pada perekaman melalui jaringan seluler untuk suara normal menghasilkan ciri yang mirip seperti suara naracoba sakit akibat derau latar yang besar.
Kata Kunci : Kelainan pita suara, jaringan seluler, transformasi wavelet.
Full Text:
PDF (Bahasa Indonesia)References
Arifianto, D., Noveriyanto, B., Kusumaningrum, H., Sekartedjo. (2010). Best Basis Selection for Speech Pathology Identification. The 3th International Conference on Mathematics And natural Sciences, Nopember 2010. Bandung: ITB.
Kusumaningrum, H., Arifianto, D. . (2010). Sekartedjo., Teknik Deteksi Dini Penderita Kelainan Pita Suara Menggunakan Analisa Sinyal Akustik. Proc. ISSN: 2087-3433, Seminar nasional Teknik Fisika (SNTF 10), October 2010. Surabaya: Teknik Fisika ITS.
Kusumaningrum, H., Arifianto, D., Sekartedjo. (2010). Voice Analysis in Determining Vocal Cord Disorder Severity Using Wavelet Transform. Proc. ISSN:2087-328X, 60th International Conference on Biomedical Engineering, BME Days 2010, October 2010. Surabaya: Teknik Elektro ITS.
Kadriyan, Hansum., Aspek Fisiologis dan Biomekanis Kelelahan Bersuara serta Pelaksanaannya. (2007). Cermin Dunia Kedokteran, 155.
Leon, Oller, L. (2008). Analysis of Voice Signals for The Harmonics-to-Noise Crossover Frequency. KTH – Scholl of Computer Science dan Communication (CSC) Departement of Speech, Music And Hearing. Barcelona: UPC.
Moran, R. J., Reilly, R.B., Chazal, P., Lacy, P.D. (2006). Telephony – Based Voice Pathology Assesment Using Automated Speech Analysis. IEEE Transaction on Biomedical Engineering, 53(3).
Murphy, P., Akande, O. (2005). Cepstrum-Based Estimation of the Harmonic-to noise Ratio for Synthesized and Human Voice Signals In Nonlinear Analyses and Algorithms for Speech Processing. Barcelona: Springer.
Saenz, L.N., Osma, R.V., Godigo, L.J., Blanco, V.M., Cntz, R.F., Arias-L.J. (2008). Effect of Audio Compression in Automatic Detection of Voice Pathologies. IEEE Transaction on Biomedical Engineering, 55(12), 2831-2835.
Zhang, Z., Etoh, M. (2007). ICA-Based Noise Reduction for Mobile Phone Speech Communication. IEEE, 470-473.
Zwetsch, I., Fagundes, R., Russomano, T. (2006). Scolari, D., Digital signal processing in the differential diagnosis of beningn larynx diseases. Porto Alegre
DOI: https://doi.org/10.31294/ji.v3i1.310
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Jurnal Informatika
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License