Sentiment Analysis of Sirekap Application Review Using Logistic Regression Algorithm

Audi Hagi, Dionisia Bhisetya Rarasati

Abstract


General Elections (Pemilu) is one of the crucial moments in democracy to elect representatives of the people. The General Elections Commission (KPU) launched the Sirekap application as an aid in the election process. This application allows polling station officers (KPPS) to record the vote count electronically. However, there have been some complaints and feedback from the public regarding the Sirekap application. To understand public sentiment towards the Sirekap application, this study was conducted by analyzing user reviews on the Google Play Store. The Logistic Regression algorithm is used to classify review sentiment into positive and negative. The analysis process involves data preprocessing, z-score normalization, dividing the data set into 80% training data and 20% test data, weighting words using the TF-IDF method, training the model using the Logistic Regression algorithm, and testing the model with a confusion matrix. The results of the analysis show that the Logistic Regression algorithm is effective in classifying the sentiment of the Sirekap application reviews with an accuracy of 91%. The precision score for the positive and negative classes are 90% and 92%, respectively. The recall score for the positive and negative classes are 94% and 87%, respectively. The f1-score for the positive and negative classes are 92% and 90%, respectively. The results of this sentiment analysis can also be used by the KPU to understand the level of user satisfaction and improve the quality of the Sirekap application for the 2024 Regional Head Elections (Pilkada).


Keywords


Analisis Sentimen; Logistic Regression; Sirekap

Full Text:

PDF

References


Assaidi, S. A., & Amin, F. (2022). Analisis Sentimen Evaluasi Pembelajaran Tatap Muka 100 Persen pada Pengguna Twitter menggunakan Metode Logistic Regression. Jurnal Pendidikan Tambusai, 6(2), 13217–13227.

Azizah, I., Cholissodin, I., & Yudistira, N. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play menggunakan Metode Word Embedding dan Long Short Term Memory (LSTM). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(5), 2453–2459. http://j-ptiik.ub.ac.id

Fauzi, A., Maulana, A., & Setiawan, A. (2022). Perancangan Aplikasi Rekapitulasi Hasil Pemilu Sementara Berbasis Android Mobile. CONTEN : Computer and Network Technology, 2(1), 17–26. https://doi.org/10.31294/conten.v2i1.1179

Gauru, C. C., Martini, R., & Alfirdaus, L. K. (2022). Implementasi Sirekap Dalam Pilkada 2020 Kabupaten Semarang. Reformasi, 12(2), 224–230. https://doi.org/10.33366/rfr.v12i2.3874

Izzaty, R., & Nugraha, X. (2019). Perwujudan Pemilu yang Luberjurdil melalui Validitas Daftar Pemilih Tetap. Jurnal Suara Hukum, 1(2), 155. https://doi.org/10.26740/jsh.v1n2.p155-171

Kholilullah, M., & Hayati, U. (2024). Analisis Sentimen Pengguna Twitter(X) Tentang Piala Dunia Usia 17 Menggunakan Metode Naive Bayes. Jurnal Mahasiswa Teknik Informatika, 8(1), 392–398. https://apify.com/quacker/twitter-scraper

Kim, S. W., & Gil, J. M. (2019). Research paper classification systems based on TF-IDF and LDA schemes. Human-Centric Computing and Information Sciences, 9(1). https://doi.org/10.1186/s13673-019-0192-7

KPU. (2020). Peraturan Komisi Pemilihan Umum Nomor 18 Tahun 2020 Tentang Perubahan Atas Peraturan Komisi Pemilihan Umum Nomor 8 Tahun 2018 Tentang Pemungutan Dan Penghitungan Suara Pemilihan Gubernur Dan Wakil Gubernur, Bupati Dan Wakil Bupati, Dan/Atau Wali Kota Dan . Komisi Pemilihan Umum.

KPU. (2024). Keputusan Komisi Pemilihan Umum Nomor 66 Tahun 2024 Tentang Pedoman Teknis Pelaksanaan Pemungutan dan Perhitungan Suara dalam Pemilihan Umum. Komisi Pemilihan Umum.

Nofenky, & Rarasati, D. B. (2022). Recommendation for Classification of News Categories Using Support Vector Machine Algorithm with SVD. Ultimatics : Jurnal Teknik Informatika, 13(2), 72–80. https://doi.org/10.31937/ti.v13i2.1854

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.

Pradana, M. G. (2020). Penggunaan Fitur Wordcloud dan Document Term Matrix dalam Text Mining. Jurnal Ilmiah Informatika, 8(1), 38–43.

Rahayu, W. I., Prianto, C., & Novia, E. A. (2021). Perbandingan Algoritma K-Means Dan Naïve Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan Pada Pt. Pertamina (Persero). Jurnal Teknik Informatika, 13(2), 1–8. https://ejurnal.poltekpos.ac.id/index.php/informatika/article/view/1383

Rarasati, D. B. (2020). A Grouping of Song-Lyric Themes Using K-Means Clustering. JISA(Jurnal Informatika Dan Sains), 3(2), 38–41. https://doi.org/10.31326/jisa.v3i2.658

Samsir, Ambiyar, Unung Verawardina, Firman Edi, R. W. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. Jurnal Media Informatika Budidarma, 5(1), 149. https://doi.org/10.30865/mib.v5i1.2604

Whendasmoro, R. G., & Joseph, J. (2022). Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN. JURIKOM (Jurnal Riset Komputer), 9(4), 872. https://doi.org/10.30865/jurikom.v9i4.4526

Wijaya, H., & Hakim, L. (2023). Analisis Sentimen Kebijakan Jaminan Hari Tua (Jht) Pada Twitter Menggunakan Naïve Bayes. Jurnal Algoritma, Logika Dan Komputasi, 6(1), 509–518. https://doi.org/10.30813/j-alu.v6i1.3552

Yutika, C. H., Adiwijaya, A., & Faraby, S. Al. (2021). Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5(2), 422. https://doi.org/10.30865/mib.v5i2.2845




DOI: https://doi.org/10.31294/inf.v11i2.22066

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Audi Hagi, Dionisia Bhisetya Rarasati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License