Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung
Abstract
Prediksi keberlangsungan hidup pasien gagal jantung telah dilakukan pada penelitian untuk mencari tahu tentang kinerja, akurasi, presisi dan performa dari model prediksi ataupun metode yang digunakan dalam penelitian, dengan menggunakan dataset heart failure clinical records. Namun dataset ini memiliki permasalahan yaitu bersifat tidak seimbang yang dapat menurunkan kinerja model prediksi karena cenderung menghasilkan prediksi kelas mayoritas. Pada penelitian ini menggunakan pendekatan level algoritma untuk mengatasi ketidakseimbangan kelas yaitu teknik bagging dengan metode Random Forest lalu digabungkan dengan metode Hyper-Parameter Tuning agar kinerja yang dihasilkan menjadi lebih baik. Selanjutnya model dilatih dengan dataset dan dibandingkan dengan metode lain, hasilnya menunjukkan bahwa Random Forest dengan Random Search Hyper Parameter-Tuning mencapai nilai AUC sebesar 0,906 dan untuk model Random Forest tanpa Random Search memperoleh nilai AUC sebesar 0,866.
Prediction of the survival of heart failure patients has been carried out in research to find out about the performance, accuracy, precision and performance of the prediction model or method used in the study, using the heart failure clinical records dataset. However, this dataset has a problem, namely being unbalanced which can reduce the performance of the prediction model because it tends to produce predictions for the majority class. This study uses an algorithm level approach to overcome class imbalance, namely the bagging technique with the Random Forest method and then combined with the Hyper-Parameter Tuning method so that the resulting performance is better. Then the model was trained with the dataset and compared with other methods, the results showed that the Random Forest with Random Search Hyper Parameter-Tuning achieved an AUC value of 0,906 and for the Random Forest model without Random Search the AUC value of 0,866 was obtained.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Annisa, R., 2019. Analisis Komparasi Algoritma Klasifikasi Data Mining untuk Prediksi Penderita Penyakit Jantung. Jurnal Teknik Informatika Kaputama (JTIK), Vol.3, No.1 : 22-28.
Bergstra, J. & Bengio, Y., 2012. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, Vol. 13, pp. 281-305.
Chen, C., A. Liaw, & L.Breiman, 2004. Using Random Forest to Learn Imbalanced Data. Biometrics Research Department, Pennsylvania, United States (tidak dipublikasikan).
Chicco, D. & Jurman, G., 2020. Machine Learning Can Predict Survival of Patients with Heart Failure from Serum Creatinine and Ejection Fraction Alone. BMC Medical Informatics and Decision Making, 20 : 1-16.
Firdaus, I. A., 2022. Deteksi Infeksi Mycoplasma Pneumoniae Pneumonia menggunakan Komparasi Algoritma Klasifikasi Machine Learning. Journal of Information Technology and Computer Science, Vol. 7 No.1 : 35-42.
Galar, M., A. Fernandez, E. Barrenechea, H. Bustince & F. Herrera, 2011. A Review on Ensembles for the Class Imbalance Problem : Bagging-, Boosting-, and Hybrid-Based Approaches. Spanish Ministry of Science and Technology, Spanish (tidak dipublikasikan).
Junior, J.B., Rd.R. Saedudin, V. P. Widharta, 2021. Perbandingan Akurasi Algoritma Support Vector Machine pada Penyakit Diabetes. E-Proceeding of Engineering, Vol.8, No.5 : 9749-9756.
Rahayu, S., J. J. Purnama, A. B. Pohan, F. S. Nugraha, S. Nurdiani, & S. Hadianti, 2020. Prediction of Survival of Heart Failure Patients Using Random Forest. Jurnal PILAR Nusa Mandiri, Vol. 16 No.2 : 255-260.
Wahono, R. S. & Suryana, N., 2013. Combining Particle Swarm Optimization Based Feature Selection and Bagging Technique for Software Defect Prediction. International Journal of Software Engineering and Its Applications. Vol. 7, No. 5 : 153-166.
Widjiyati, N., 2021. Implementasi Algoritme Random Forest pada Klasifikasi Dataset Kredit Approval. Jurnal Janita Informatika dan Sistem Informasi, Vol. 1, No. 1 : 1-7.
DOI: https://doi.org/10.31294/inf.v10i1.14531
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Muhammad Ali Abubakar, Muliadi -, Andi Farmadi, Rudy Herteno, Rahmat Ramadhani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License