Analisis Sentimen Ulasan Aplikasi Gopay Menggunakan Naive Bayes dengan Teknik Oversampling
Sari
The Gopay application is one of the most widely used fintech applications compared to other platforms and has recorded 207,000 reviews in the comments column on the Play Store. By utilizing this data, this research aims to extract and computationally analyze positive and negative sentiment using the Naive Bayes algorithm combined with oversampling techniques. The dataset used is sourced from the Google Play Store. The research results showed that the modeling applied was able to produce an accuracy value of 92.89%. This is an important finding because there is a significant increase in accuracy when compared to Naive Bayes modeling without using oversampling which is only 89.19%. Thus, the application of oversampling techniques in the Naive Bayes model can be an effective solution in overcoming class imbalance in sentiment analysis because it can improve the performance of the classification model.
Teks Lengkap:
pdf: 72-79Referensi
Ahdiat, A. (2023). Survei Pengguna Dompet Digital: Gopay dan OVO Bersaing Ketat. Databoks. https://databoks.katadata.co.id/datapublish/2023/07/25/survei-pengguna-dompet-digital-gopay-dan-ovo-bersaing-ketat
Ansori, M. A. Z., Wahyudin, M. W., Nurbaet, N. I., Isagozi, M. R., Diva, S. A., Zahra, N. A., Nur, G., Yusuf, M., & Tabroni, M. (2024). Analisis Literasi Keuangan Penggunaan Fintech Payment Bagi Pelaku Usaha UMKM. Economic Reviews Journal, 3(1), 210–225. https://doi.org/10.56709/mrj.v3i1.130
Basalamah, R., Nurdin, N., Haekal, A., Abdul, J., & Noval, N. (2022). Risiko Terhadap Minat Menggunakan Financial Technology ( Fintech ) Gopay. Jurnal Ilmu Ekonomi Dan Bisnis Islam, 4(1), 57–71.
Ghozali, M. I., Sugiharto, W. H., & Iskandar, A. F. (2022). Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 33(1), 1–12. https://doi.org/10.30865/klik.v3i6.936
Indarwati, K. D., & Februariyanti, H. (2023). Analisis Sentimen Terhadap Kualitas Pelayanan Aplikasi Gojek Menggunakan Metode Naive Bayes Classifier. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1). https://doi.org/10.35957/jatisi.v10i1.2643
Irnawati, O., & Solecha, K. (2022). Analisis Sentimen Ulasan Aplikasi Flip Menggunakan Naive Bayes dengan Seleksi Fitur PSO. Jurnal Ilmiah Intech, 4(2), 189–199.
Khoirul Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 478–483. https://doi.org/10.36040/jati.v7i1.6373
Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(9), 4305–4313. http://j-ptiik.ub.ac.id
Maharani, F. M. D., Hananto, A. L., Hilabi, S. S., Apriani, F. N., Hananto, A., & Huda, B. (2022). Perbandingan Metode Klasifikasi Sentimen Analisis Penggunaan E-Wallet Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor. Metik Jurnal, 6(2), 97–103. https://doi.org/10.47002/metik.v6i2.372
Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270
Ningri, L. J., Hamidi, M., & Adrianto, F. (2023). Sentiment Analysis Against Digital Payment “GoPay”, “OVO”, “DANA”, and “ShopeePay” Using Naïve Bayes Classifier Algorithm. Indonesian Journal of Economics and Management, 3(2), 322–336. https://doi.org/10.35313/ijem.v3i2.4765
Riskawati, Fatihanursari, Iin, & Rinaldi, A. R. (2024). Penerapan Metode Naïve Bayes Classifier Pada Analisis Sentimen Aplikasi Gopay. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 346–353.
Rohmah, N. A., & Kurnianingsih, H. (2023). Faktor - Faktor Yang Mempengaruhi Pengguna Aplikasi Gopay. JEBI: Jurnal Ekonomi Dan Bisnis, 1(6), 890–904.
Syafrizal, S., Afdal, M., & Novita, R. (2023). Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 10–19. https://doi.org/10.57152/malcom.v4i1.983
Tanggraeni, A. I., & Sitokdana, M. N. N. (2022). Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 785–795. https://doi.org/10.35957/jatisi.v9i2.1835
Tri Dewi Septiani, A., Prayogo Kuncoro, A., Subarkah, P., & Riyanto. (2023). Perbandingan Kinerja Metode Naïve Bayes Classifier dan K-Nearest Neighbor pada Analisis Sentimen Ulasan Mobile Banking Jenius. Jurnal Krisnadana, 3, 67–77. https://ejournal.sidyanusa.org/index.php/jkdn
DOI: https://doi.org/10.31294/ijcit.v9i2.23443
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##
P-ISSN: 2527-449X E-ISSN: 2549-7421
Statistik Pengunjung Jurnal IJCIT