Analisis Prediksi Neural Network dan Support Vector Machine pada Multivariate Time Series Dataset
Sari
Referensi
Agustinus jabobus, E. W. (2014). Penerapan Metode Support Vector Machine pada Sistem Deteksi Instrusi secara Real-time. IJCCS, 8(1), 13-24.
Browniee, J. (2018, 5 23). Machine Leraning Mastery. (Machine Learning article) Dipetik 8 5, 2019, dari https://machinelearningmastery.com/k-fold-cross-validation/
C. Orsenigo, C. V. (2010). Combining Discrete SVM and Fixed cardinality Warping distances for multivariates times series classification. Pattern Recognition, 43, 3787-3794.
Christianini N, T. J. (2000). An Introduction to SUpport Vector Machines and Other Kernel Based Learning Methods. 2000: Cambridge Press University.
Efendi, A. (2013). Penggunaan ArtificialNeural Network untuk mendeteksi kelainan mata miopi pada manusia dengan metode Backprogration. Malang: Universitas Islam Negeri Maulana Malik Ibrahim.
Gandhi, R. (2018, 6 7). Towardsdatascience. (Datasciene) Dipetik 8 4, 2019, dari https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
Gorunescu, F. (2011). Data Mining Concept Model Technique. Dalam Intelligent Systems Reference Library (Vol. 12, hal. 12). Verlag Berlin Heidelberg: Springer.
Herdianto. (2013). Metode Prediksi. Yogyakarta: Mercubuana.
Herjanto, E. (2008). Manajemen Operasi Edisi Ketiga. Jakarta: Grasindo.
Hidayatullah, T. (2014). Kajian Komparasi Penerapan Algoritma Support Vector Machine (SVM) dan Multilayer Perceptron (MLP) dalam prediksi indeks saham sektor perbankan: studi kasus saham LQ45 IDX Bank BCA. Senimar Nasional Inovasi dan Tren (SNIT) 2014. Jakarta.
Mohamed F. Ghalwash, D. R. (2012). Early Classification of Multivariate Time Series Using a Hybrid HMM/SVM model. 2012 IEEE International COnference on Bioinformatics and Biomedicine. USA.
Muhtaram, A. (2011). Metris Comunity. Dipetik 8 5, 2019, dari http://www.metris-community.com/pengertian-data-mining-konsep-pdf/
Nuno Caestano, P. C. (2015). Using Data Mining For Prediction of Hospital Length of stay: AN Application of th CRISP-DM Methodology. Springer International Publishing Switzerland, 149-166.
Pusphita Anna Octaviani, Y. W. (2014). Penerapan Metode Klasifikasi Support Vector Machine (Svm) pada Data Akreditasi Sekolah dasar (SD) di Kabupaten Magelang. Jurnal Gaussian, 3(4), 811-820.
Rima Diani, U. N. (2017). Analisis Pengaruh Kernel Support Vector Machine (SVM) pada Klasifikasi Data Microarray unutk deteksi Kanker. Ind. Journal on Computing, 2(1), 109-118.
Soelistyani, Y. (t.thn.). Model Peramalan Harga Saham dengan Pendekatan Neural Network Algoritma Multilayer Percepton (MLP) dan Support Vector Regression (SVR).
Team, N. W. (2019, Juli Sabtu). National Weather Service. (National Oceanic and Atmospheric Administration) Dipetik Juli Sabtu, 2019, dari https://airquality.weather.gov/
V.N, V. (1999). The Nature of Statitical Learning Theory. New York Berlin Heidelberg: Springer-Verlag.
Vapnik, V. C. (1995). Support Vector Networks. Machine Leraning, 20(1), 273-279.
Zhiguang Wang, W. Y. (2017). Time Series Classification from Scratch with Deep Neural Network: A Strong Baseline. 2017IEEE. USA.
DOI: https://doi.org/10.31294/ijcit.v7i2.14443
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##
P-ISSN: 2527-449X E-ISSN: 2549-7421
Statistik Pengunjung Jurnal IJCIT