Uji Performa Teknik Klasifikasi untuk Memprediksi Customer Churn
Abstract
Full Text:
PDFReferences
Bisri, A., & Rachmatika, R. (2019). Integrasi gradient boosted trees dengan smote dan bagging untuk deteksi kelulusan mahasiswa. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), 8(4), 309–314. https://doi.org/10.22146/jnteti.v8i4.529
Chandranegara, D. R., Arifianto, S., & Wibowo, H. (2020). Analisa data pesawat terbang menggunakan metode elimination void data dan smoothing data. Jurnal POROS TEKNIK, 12(1), 1–7.
Drajana, I. C. R. (2019). Prediksi loyalitas pelanggan indihome dengan metode k-nearest neighbor. Jurnal Sistem Informasi dan Teknik Komputer, 4(2), 100–103. https://doi.org/10.4249/scholarpedia.1883
Fadillah, A. P. (2015). Penerapan metode CRISP-DM untuk prediksi kelulusan studi mahasiswa menempuh mata kuliah (Studi kasus universitas xyz). Jurnal Teknik Informatika Dan Sistem Informasi, 1(3), 260–270. https://doi.org/10.28932/jutisi.v1i3.406
Golestan, F. D., & Hezarkhani, A. (2018). Quadratic investigation of geochemical distribution by backward elimination approach at Glojeh epithermal Au(Ag)-polymetallic mineralization, NW Iran. Journal of Central South University, 25(2), 342–356. https://doi.org/10.1007/s11771-018-3741-8
Herawati, M., Wibowo, I. L., & Mukhlash, I. (2016). Prediksi customer churn menggunakan algoritma fuzzy iterative dichotomiser 3. Limits: Journal of Mathematics and Its Applications, 13(1), 23–35. https://doi.org/10.12962/j1829605x.v13i1.1913
Kaggle. (2018). Telco customer churn [Data file]. San Francisco: Author.
Kavitha, V., Kumar, G. H., Kumar, S. M., & Harish, M. (2020). Churn prediction of customer in telecom industry using machine learning algorithms. International Journal of Engineering Research and Technology (IJERT), 9(5), 181–184. https://doi.org/10.17577/ijertv9is050022
Kementerian Komunikasi dan Informatika. (2018). Analisa Industri Telekomunikasi Indonesia untuk Mendukung Efisiensi. https://balitbangsdm.kominfo.go.id/publikasi_465_3_199
Khumaidi, A. (2020). Data mining for predicting the amount of coffee production using CRISP-DM method. Jurnal Techno Nusa Mandiri, 17(1), 1–8.
https://doi.org/10.33480/techno.v17i1.1240
Lee, E. B., Kim, J., & Lee, S. G. (2017). Predicting customer churn in mobile industry using data mining technology. Industrial Management and Data Systems, 117(1), 90–109. https://doi.org/10.1108/IMDS-12-2015-0509
Li, X., & Li, Z. (2019). A hybrid prediction model for e-commerce customer churn based on logistic regression and extreme gradient boosting algorithm. International Information and Engineering Technology Association (IIETA), 24(5), 525–530. https://doi.org/10.18280/isi.240510
Machine Learning. (2020). Retrieved from https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data.
Pamina, J., Beschi Raja, J., Sathya Bama, S., Soundarya, S., Sruthi, M. S., Kiruthika, S., Aiswaryadevi, V. J., & Priyanka, G. (2019). An effective classifier for predicting churn in telecommunication. Journal of Advanced Research in Dynamical and Control Systems, 11(1), 221–229.
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134–60149. https://doi.org/10.1109/ACCESS.2019.2914999
Utami, Y. T., Shofiana, D. A., & Heningtyas, Y. (2020). Penerapan algoritma C4.5 untuk prediksi churn rate pengguna jasa telekomunikasi. Jurnal Komputasi, 8(2), 69–76.
Wardani, N. W., & Ariasih, N. K. (2019). Analisa komparasi algoritma decision tree C4.5 dan naïve bayes untuk prediksi churn berdasarkan kelas pelanggan retail. International Journal of Natural Sciences and Engineering, 3(3), 103–112.
Yulianti. (2018). Metode data mining untuk prediksi churn pelanggan. Jurnal ICT Akademi Telkom Jakarta, 17, 46–52.
Zhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and k-means techniques. Informatics in Medicine Unlocked, 17, 1–7. https://doi.org/10.1016/j.imu.2019.100179
DOI: https://doi.org/10.31294/bi.v9i1.9992
DOI (PDF): https://doi.org/10.31294/bi.v9i1.9992.g4800
ISSN: 2338-9761