PENERAPAN ALGORITMA NAÏVE BAYES UNTUK PREDIKSI PENYAKIT TUBERCULOSIS (TB)

Rizal Amegia Saputra

Abstract


The disease Tuberculosis (TB) is a contagious and deadly diseases in the world, even the World Health Organization (WHO) declared as the world's emergency disease (global emergency), some research fields of health including one disease TB has been widely carried out to detect the disease early, but it is not yet known which algorithm is quite good in predicting disease TB. On this research will apply the Algorithm Naïve Bayes, in predicting diagnosis of TB disease to Naïve Bayes algorithm so that the destination is the most accurate algorithm in the prediction of the disease TUBERCULOSIS. The test results using the method of Confusion Matrix and the ROC Curve, the naïve bayes algorithm is known that has a value of 91,61%, accuracy and value of the AUC of 0,995. See the value of AUC, the naïve bayes methods including group classification is very good, because the results of his AUC values between 0.90-1.00.

References


Atif Imran Toor, "Decision Support System for Lung Diseases," 2006.

Er Orhan, Feyzullah Temurtas, A Çetin Tanrıkulu, "Tuberculosis Disease Diagnosis Using Artificial Neural Networks," Springer, pp. 299-302, 2010.

Anonim. (2012, Mei) http://tbcbatam.com. [Online]. http://tbcbatam.com/alur-diagnosis-tb/

Anonim. (2009, Mei) www.hukor.depkes.go.id [Online]. htpp://www.hukor.depkes.go.id

Setiadi and Widodo, "Kajian Penerapan Model Neural Network Untuk PrediksiPenyakit Hati" , Jakarta, 2012.

Retno Asti Werdhani, PATOFISIOLOGI, DIAGNOSIS,DAN KLAFISIKASI TUBERKULOSIS, 2011.

Jason Fine, An Overview Of Statistical Methods in Diagnostic Medicine. Chapel Hill, 2012.

Wu and Kumar, The Top Ten Algorithms in Data Mining. USA: CRC Press, 2009.

Anonim, Pedoman Penerapan DOTS di Rumah Sakit. Jakarta, 2007.

S Susanto and D Suryadi, Pengantar Data Mining Menggali Pengetahuan dari Bongkahan Data. Yogyakarta: C.V ANDI OFFSET, 2010.

Daniel T Larose, Discovering Knowledge In Data. Canada: Wiley-Interscience,2005.

Carlo Vercellis, Data Mining and Optimization for Decision Making. Italy: WILEY, 2009.

Max Bramer, Principles Of Data Mining. London: Springer, 2007.

Kusrini & luthfi, Algoritma Data mining. Yogyakarta: Andi Offset, 2009.

J Han and M Kamber, Data Mining: Concepts and Techniques. San Fransisco: Morgan kauffman, 2006.

Prabowo,P,W., "GEOGRAPHICAL INFORMATION SYSTEM ENGINEERING IN THE IMPLEMENTATION OF SPATIAL DYNAMIC MODEL ON FORESTED AREAS ," in ISIT, Jakarta, 2009.

Florin Gorunescu, Data Mining, Concepts, Models and Techniques. Berlin: Springer, 2011.

Anonim, Pedoman Penerapan DOTS di Rumah Sakit. Jakarta, 2006.

Redho Pati. (2010, Oktober) ittelkom.ac.id. [Online] http://digilib.ittelkom.ac.id/index.php?option=com content&view=article&id=687:svm&catid=15:pemrosesan-sinyal&Itemid=14

Witten, I. H., Frank, E., & Hall, M. A., Data Mining Practical Machine Learning Tools and Techniques. USA: Morgan Kaufmann Publishers, 2007.

Xu & Donald, CLUSTERING. Canada: A JOHN WILEY & SONS, INC, 2009.

Xiao Hua Zhou, Nancy A Obuchowski, and Donna K Mcclish, Statistical Methods in Diagnostic Medicine. New York: Canada, 2002.




DOI: https://doi.org/10.31294/swabumi.v1i1.994

INDEXING

 

    P-ISSN : 2355-990X                       E-ISSN: 2549-5178

                     

 

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License