DETEKSI OTOMATIS KANKER PAYUDARA MENGGUNAKAN METODE MORPHOLOGICAL RECONSTRUCTION DENGAN K-MEANS CLUSTERING PADA CITRA MRI
Abstract
Abstract
Breast cancer is still a major health problem for women around the world, the population of Indonesia is 237.8 million in 2010 and detected by cancer patients is estimated at 1.02 million. The purpose of this study is to reconstruct the image of the MRI scan to clarify the object of cancer so that it can be more easily identified whether a person really has breast cancer or not, in this study using the morphological reconstruction method with the k-means algorithm to segment the image, the results obtained sensitivity of around 92.86%, specificity of 78.57%, and accuracy of 85.71%.
Keywords - cancer, morphological reconstruction, k-means, image.
Abstrak
Kanker payudara masih menjadi masalah kesehatan utama bagi wanita di seluruh dunia, Jumlah penduduk Indonesia 237,8 juta jiwa pada tahun 2010 dan terdeteksi penderita kanker diperkirakan 1,02 juta jiwa. Tujuan penelitian ini untuk merekonstruksi citra dari hasil scan MRI untuk memperjelas objek kanker sehingga dapat lebih mudah diidentifikasi apakah seseorang benar-benar terkena kanker payudara atau tidak, dalam penelitian ini menggunakan metode rekonstuksi morfologi dengan algoritma k-means untuk melakukan segmentasi citra, hasilnya didapatkan nilai sensitivitas sekitar 92,86%, spesifisitas 78,57%, dan akurasi 85,71%.
Kata kunci – kanker, rekonstruksi morfologi, k-means, citra.Full Text:
PDF (Bahasa Indonesia)References
Adi Hanung, I. A. (2016). Segmentation of Optic Disc on Retinal Fundus . International Conference on Science in Information Technology (ICSITech), 362.
Ashkan Tashk, M. S. (2015). Automatic Detection of Breast Cancer Mitotic Cells Based on the combination of Textural, Statistical and Innovative Mathematical Features. Accepted Manuscript, 1.
Fen Song, Z. X. (2013). Automatic Segmentation of Granules of the Solar Photosphere Using Morphological . International Conference on Intelligent Networks and Intelligent Systems, 300.
Luc vincent, M. I. (1993). Morphological Grayscale Reconstruction in Image Analysis : Applications and Efficient Algorithms. Transaction On Image Processing, 176.
Saheb Basha, S. P. (2009). AUTOMATIC
DETECTION OF BREAST CANCER
MASS IN MAMMOGRAMS USING MORPHOLOGICAL OPERATORS AND FUZZY C –MEANS CLUSTERING. Journal of Theoretical and Applied Information Technology , 704.
Salih Haydar, R. L. (2017). Automatic Detection and Segmentation of Breast . International Journal of Innovative Research in Science, 570.
Sharma Yamimi, Y. K. (2014). Brain Tumor Extraction From MRI Image Using Mathematical Morphological Reconstruction. 978-1-4799-6986-9/14/.
Wang Defeng, L. S. (2009). Automatic detection of breast cancers in mammograms using structured. Neurocomputing, 1.
Wang Yang, X. J. (2015). Automated Identification of Sunspot Penumbral Grains Using Morphological. Conference Publishing Service, 13.
Yu Lan, L. D. (2014). Automated Sunspot Detection Using Morphological. Chinese Control Conference, 7168.
Zhangyuan GU, Y. S. (2015). Detection of infrared dim and small targets based on saliency and grayscale morphological reconstruction . Chinese Control Conference, 3811.
DOI: https://doi.org/10.31294/swabumi.v7i1.5662
INDEXING
P-ISSN : 2355-990X E-ISSN: 2549-5178