Penerapan Algoritma C4.5 Untuk Klasifikasi Penempatan Tenaga Marketing

Eka Fitriani, Riska Aryanti, Atang Saepudin, Dian Ardiansyah

Abstract


Marketing is a job that has a scope of work to market a product. Marketing is at the forefront of the company. The problem that often occurs in companies is not having a reliable marketing force. The problem arises because the process of accepting new marketing is still not done professionally. This happens because there is no systematic standard method to assess the feasibility of marketing candidates. Therefore it is necessary to analyze the marketing placement so that it can determine the feasibility of a new marketing placement problem. Through the results of the analysis of new marketing placements, it can be seen whether the marketing candidates passed or did not qualify. Of the problems that exist testing the data mining classification method to find out the algorithm to predict marketing feasibility is to use an algorithm that is C4.5. After testing with the C4.5 algorithm the results obtained are that the C4.5 algorithm produces an accuracy value of 91.10% and an AUC value of 0.921 with a diagnosis level of Excellent Classification. So that the conclusion C4.5 algorithm is a good algorithm to be applied to the feasibility of marketing placement.

 

Keywords : Marketing Feasibility, Data Mining, C4.5


Keywords


Data Mining

References


Abdul Rohman. (2016). Komporasi Metode Klasifikasi Data Mining Untuk Prediksi Penyakit Jantung. Neo Teknika, 2(2), 21–28.

Amalia, H., Lestari, A. F., & Puspita, A. (2017). Penerapan Metode Svm Berbasis Pso Untuk Penentuan Kebangkrutan Perusahaan. Jurnal Techno Nusa Mandiri, 14(2), 131–136.

Iriadi, N., & Nuraeni, N. (2016). Kajian Penerapan Metode Klasifikasi Data Kelayakan Kredit Pada Bank. Jurnal Teknik Komputer Amik Bsi, Ii(1), 132–137.

Iskandar, D., & Suprapto, Y. K. (2015). Perbandingan Akurasi Klasifikasi Tingkat Kemiskinan Antara Algoritma C 4.5 Dan Naïve Bayes. Ilmiah Nero, 2(1), 37–43.

Miftah, A. (2015). Mengenal Marketing Dan Marketers Syariah. Islamiconomic: Jurnal Ekonomi Islam, 6(2), 15–20.

Nuraeni, N. (2017). Penentuan Kelayakan Kredit Dengan Algoritma Naïve Bayes Classifier : Studi Kasus Bank Mayapada Mitra Usaha Cabang Pgc, Iii(1), 9–15.

Pääkkönen, P., Pakkala, D., Black, T., Yuliansyah, H., Zahrotun, L., Jantawan, B., … Emberda, E. J. G. (2013). The Application Of Data Mining To Build Classification Model For Predicting Graduate Employment. International Journal Of Computer Science And Information Security, 11(1), 1–8. Https://Doi.Org/10.1016/J.Bdr.2015.01.001

Piad, K. C., & Ballera, M. A. (2016). Predicting It Employability Using Data Mining Techniques, (January 2014), 26–30.

Prismas, P. T., Jakarta, J., Asistyasari, A., & Baidawi, T. (2017). Analisis Penerimaan Karyawan Posisi Field Collector Menggunakan Algoritma C4 . 5 Pada, 2(2), 1–6.

Puspita, A., & Wahyudi, M. (2015). Algoritma C4.5 Berbasis Decision Tree Untuk Prediksi Kelahiran Bayi Prematur, 97–102.

Sari, N. R., Mahmudy, W. F., Ilmu, M., Informatika, K., Teknologi, P., & Komputer, I. (2015). Fuzzy Inference System Tsukamoto Untuk Menentukan Kelayakan Calon Pegawai, (November), 2–3.

Utami, L. A. (2017). Melalui Komparasi Algoritma Support Vector Machine Dan K-Nearest Neighbor Berbasis Particle Swarm Optimization, 13(1), 103–112.




DOI: https://doi.org/10.31294/p.v22i1.6898

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License