Komparasi Criteria Splitting Pada Algoritma Iterative Dichotomizer 3(ID3) Untuk Klasifikasi Kelayakan Kredit

Nandya Ayu Fatmandini, Rizal Amegia Saputra, Resti Yulistria

Abstract


Credit is a form of business run by various banks. In running credit, banks will always consider the credit that will occur, for that data about creditworthiness decisions will be very necessary to support the business wheels of banking life. Credit analysis is carried out to support credit or historical data. This can reduce credit. Bank Sinarmas Sukabumi is one of the largest finance companies in Indonesia. This company provides financing services for the purchase of new vehicles or used vehicles, some funds and funds provided by Sinarmas Bank in terms of credit, credit assistance, one for analyzing important credit, because one of them, looking for credit, bad things that can be done by companies that are not careful in granting credit. The ID3 algorithm can search all discussions and decisions. The application of the ID3 method by comparing the three criteria for obtaining credit, understanding the assessment criteria, obtaining an accuracy value of 62.67% and an AUC value of 0.800, the highest in accordance with the criteria being compared, is discussed with the criteria. The Strengthening Ratio and Gini Index have the lowest Accuracy and AUC values. Thus, the ID3 method with Gain Information criteria is a good method and criterion in predicting lending to Bank Sinarmas Sukabumi.

References


Akbilgic, O., & Bozdogan, H. (2015). A New Supervised Classification of Credit Approval Data via the Hybridized RBF Neural Network Model Using Information Complexity. Spinger, 13-27.

Bahri, S. (2017). Seleksi Atribut Pada Algoritma C4.5 Menggunakan Genetik Algoritma Dan Bagging Untuk Analisa Kelayakan Pemberian Kredit. Kumpulan jurnaL Ilmu Komputer (KLIK) , 175.

Harlina, S. (2018). Data Mining Pada Penentuan Kelayakan Kredit Menggunakan Algoritma K-Nn Berbasis Forward Selection. CCIT Journal, 237.

Heryon, & Kardianawati, A. (2018). Implementasi Metode Naive Bayes Untuk Klasifikasi Kredit Motor. Journal of Information System, 11.

informatikalogi. (2017, 06 10). Algoritma ID3. Retrieved from informatikalogi.com: https://informatikalogi.com/algoritma-id3/

Ispriyanti, D., & Hoyyi, A. (2016). Analisis Klasifikasi Masa Studi Mahasiswa Prodi Statistika UNDIP Dengan Metode Support Vector Machine (SVM) dan ID3 (Iterative Dichotomiser 3). Media Statistika.

Saputra, R. A. (2014). Komparasi Algoritma Klasifikasi Data Mining Untuk Memprediksi Penyakit Tuberculosis (Tb): Studi Kasus Puskesmas Karawang Sukabumi. Seminar Nasional Inovasi dan Tren (SNIT) . Bekasi.

Suyanto, S. (2017). Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika.

Tyasti, A. E., Ispriyanti, D., & Hoyyi, A. (2015). Algoritma Iterative Dichotomiser 3 (ID3) Untuk Mengidentifikasi Data Rekam Medis (Studi Kasus Penyakit Diabetes Melletus Di Balai Kesehatan Kementrian Perindustrian. Jakarta: Jurnal Gussian.

Widodo, P. P., Handayanto, R. T., & Herlawati, H. (2013). Penerapan Data Mining dengan Matlab. Bandung: Rekayasa Sains.

Wijaya, Ardi ; Rifqo, Muhammad Husni;. (2017). Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit. Jurnal Pseudocode, 120.




DOI: https://doi.org/10.31294/p.v22i1.6711

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License