KOMPARASI ALGORITMA KLASIFIKASI DATA MINING DALAM PENENTUAN RESIKO KREDIT PADA KOPERASI SERBA USAHA
Abstract
Growth and development of the cooperative lately , where lending credit cooperatives that
cater to its members to develop business in the workshop , stores , services and so on . No doubt ,
lend funds to member cooperatives will surely emerge problems , such as members of the
borrower paying the overdue installment of funds , misuse of funds for other purposes , the
customer fails to develop its business so as to result in cooperative funds do not flow or it can lead
to bad credit . In this study, using the method of comparison between the three models , namely
Naive Bayes , Neural Network and k - nearest neighbor , the cooperative member data to
determine which is the most accurate method for determining credit risk in business cooperatives
that will produce cooperative members who pay installments smoothly or delinquent in the
payment of the loan installments . From the results of the study to measure the performance of the
three algorithms using the test method validation . Matrikx confusion , note that the k - nearest
neighbor method has the highest accuracy value of 93.00 % , for the Naive Bayes method has an
accuracy value of 90.33 % , while the method which has the lowest value is the Neural Network
method has an accuracy value of 85.67 % . As for the value of Area Under the Curve ( AUC ) for
the k - nearest neighbor method has the highest score is 0989 , Naive Bayes method is 0.619 ,
while the lowest value method with the method of Neural Network 0.467 .
Keywords : comparison , naive Bayes , neural network , k - nearest neighbor .
Full Text:
UntitledReferences
Alpaydin, Ethem. (2010). Introduction to M
achine Learning. London: The MIT Press
Anwar, Syaiful (2012) Penerapan data mining
untuk memprediksi perilaku nasabah
kredit: Studi Kasus BPR Marcorindo
perdana ciputat Tesis, Magister Ilmu
Komputer, STMIK Nusa Mandiri,
Jakarta.
Bramer, Max. (2007). Principles of Data
Mining. London: Springer
Firmansyah (2011) Penerapan Algoritma
Klasifikasi C4.5 untuk penentuan
Kelayakan Pemberian Kredit
Koperasi,Tesis, Magister Ilmu Komputer,
STMIK Nusa Mandiri, Jakarta.
Giudici, Paolo and Silvia Figini,(2009),
Applied Data Mining for Business and
Industry, United Kingdom: John Wiley &
Sons, Inc.
Han, J.,&Kamber, M. (2006).Data Mining
Concept and Tehniques.San Fransisco:
Morgan Kauffman.
Larose, D. T. (2005).Discovering Knowledge in
Data. New Jersey: John Willey & Sons,
Inc.
Leidiyana, Heny (2011) Komparasi Algoritma
Klasifikasi Data Mining Dalam
Penentuan Resiko Kredit Kepemilikan
Kendaraan Bemotor ,Tesis,Magister Ilmu
Komputer,STMIK Nusa Mandiri,Jakarta.
Kantardzic,Mehmed (2003). Data Mining:
Concepts, Models, Methods, and
Algorithms. New Jersey: John Wiley &
Sons, Inc
Kusrini (2007) Konsep dan Aplikasi Sistem
Pendukung Keputusan, C.V ANDI
OFFSET (Penerbit ANDI) : Yogayakarta
Maimon, Oded&Rokach, Lior.(2005). Data
Mining and Knowledge Discovey
Handbook. New York: Springer
Myatt, Glenn J. (2007). Making Sense of Data:
A Practical Guide to Exploratory Data
Analysis and Data Mining. New Jersey:
John Wiley & Sons, Inc.
Profil Koperasi Serba Usaha “Ceger Jaya”
(2011). KSU “Ceger Jaya” Kelurahan
Ceger-Cipayung Jakarta Timur
Septiani, Dwi Wisti (2013). Analisa Dan
Komparasi Metode Klasifikasi Data
Mining Algoritma C4.5, Naïve Bayes,
Dan Neural Network Untuk Prediksi
Penyakit Hepatitis Tesis, Magister Ilmu
Komputer,STMIK Nusa Mandiri,Jakarta.
Sholichah, Alfiyatus (2009) Data Mining Untuk
Pembiayaan Murabahah Menggunakan
Association Rule (Studi Kasus BMT
MMU Sidogiri), Universitas Islam Negeri
Maulana Malik Ibrahim,Malang
Vercellis, Carlo (2009). Business Intelligent:
Data Mining and Optimization for
Decision Making. Southern Gate,
Chichester, West Sussex: John Willey &
Sons, Ltd.
Witten, I. H., Frank, E., & Hall, M. A. (2005).
Data Mining: Practical Machine
Learning and Tools. Burlington: Morgan
Kaufmann Publisher.
Wu, Xindong& Kumar, Vipin. (2009). The Top
Ten Algorithms in Data Mining. Boca
Raton: CRC Press
DOI: https://doi.org/10.31294/p.v15i2.6349
Copyright (c) 2013 Nandang Iriadi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2579-3500