KOMPARASI ALGORITMA KLASIFIKASI DATA MINING DALAM PENENTUAN RESIKO KREDIT PADA KOPERASI SERBA USAHA

Nandang Iriadi

Abstract


Growth and development of the cooperative lately , where lending credit cooperatives that
cater to its members to develop business in the workshop , stores , services and so on . No doubt ,
lend funds to member cooperatives will surely emerge problems , such as members of the
borrower paying the overdue installment of funds , misuse of funds for other purposes , the
customer fails to develop its business so as to result in cooperative funds do not flow or it can lead
to bad credit . In this study, using the method of comparison between the three models , namely
Naive Bayes , Neural Network and k - nearest neighbor , the cooperative member data to
determine which is the most accurate method for determining credit risk in business cooperatives
that will produce cooperative members who pay installments smoothly or delinquent in the
payment of the loan installments . From the results of the study to measure the performance of the
three algorithms using the test method validation . Matrikx confusion , note that the k - nearest
neighbor method has the highest accuracy value of 93.00 % , for the Naive Bayes method has an
accuracy value of 90.33 % , while the method which has the lowest value is the Neural Network
method has an accuracy value of 85.67 % . As for the value of Area Under the Curve ( AUC ) for
the k - nearest neighbor method has the highest score is 0989 , Naive Bayes method is 0.619 ,
while the lowest value method with the method of Neural Network 0.467 .
Keywords : comparison , naive Bayes , neural network , k - nearest neighbor .


Full Text:

Untitled

References


Alpaydin, Ethem. (2010). Introduction to M

achine Learning. London: The MIT Press

Anwar, Syaiful (2012) Penerapan data mining

untuk memprediksi perilaku nasabah

kredit: Studi Kasus BPR Marcorindo

perdana ciputat Tesis, Magister Ilmu

Komputer, STMIK Nusa Mandiri,

Jakarta.

Bramer, Max. (2007). Principles of Data

Mining. London: Springer

Firmansyah (2011) Penerapan Algoritma

Klasifikasi C4.5 untuk penentuan

Kelayakan Pemberian Kredit

Koperasi,Tesis, Magister Ilmu Komputer,

STMIK Nusa Mandiri, Jakarta.

Giudici, Paolo and Silvia Figini,(2009),

Applied Data Mining for Business and

Industry, United Kingdom: John Wiley &

Sons, Inc.

Han, J.,&Kamber, M. (2006).Data Mining

Concept and Tehniques.San Fransisco:

Morgan Kauffman.

Larose, D. T. (2005).Discovering Knowledge in

Data. New Jersey: John Willey & Sons,

Inc.

Leidiyana, Heny (2011) Komparasi Algoritma

Klasifikasi Data Mining Dalam

Penentuan Resiko Kredit Kepemilikan

Kendaraan Bemotor ,Tesis,Magister Ilmu

Komputer,STMIK Nusa Mandiri,Jakarta.

Kantardzic,Mehmed (2003). Data Mining:

Concepts, Models, Methods, and

Algorithms. New Jersey: John Wiley &

Sons, Inc

Kusrini (2007) Konsep dan Aplikasi Sistem

Pendukung Keputusan, C.V ANDI

OFFSET (Penerbit ANDI) : Yogayakarta

Maimon, Oded&Rokach, Lior.(2005). Data

Mining and Knowledge Discovey

Handbook. New York: Springer

Myatt, Glenn J. (2007). Making Sense of Data:

A Practical Guide to Exploratory Data

Analysis and Data Mining. New Jersey:

John Wiley & Sons, Inc.

Profil Koperasi Serba Usaha “Ceger Jaya”

(2011). KSU “Ceger Jaya” Kelurahan

Ceger-Cipayung Jakarta Timur

Septiani, Dwi Wisti (2013). Analisa Dan

Komparasi Metode Klasifikasi Data

Mining Algoritma C4.5, Naïve Bayes,

Dan Neural Network Untuk Prediksi

Penyakit Hepatitis Tesis, Magister Ilmu

Komputer,STMIK Nusa Mandiri,Jakarta.

Sholichah, Alfiyatus (2009) Data Mining Untuk

Pembiayaan Murabahah Menggunakan

Association Rule (Studi Kasus BMT

MMU Sidogiri), Universitas Islam Negeri

Maulana Malik Ibrahim,Malang

Vercellis, Carlo (2009). Business Intelligent:

Data Mining and Optimization for

Decision Making. Southern Gate,

Chichester, West Sussex: John Willey &

Sons, Ltd.

Witten, I. H., Frank, E., & Hall, M. A. (2005).

Data Mining: Practical Machine

Learning and Tools. Burlington: Morgan

Kaufmann Publisher.

Wu, Xindong& Kumar, Vipin. (2009). The Top

Ten Algorithms in Data Mining. Boca

Raton: CRC Press




DOI: https://doi.org/10.31294/p.v15i2.6349

Copyright (c) 2013 Nandang Iriadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
https://jpc.unik-kediri.ac.id/slot-pulsa/ http://cbtdikpora2.bantulkab.go.id/slot-maxwin/ https://kotasehat.depok.go.id/-/slot-pulsa/ https://kotasehat.depok.go.id/-/slot-gacor/ https://kotasehat.depok.go.id/-/slot-gopay/ https://smkppnmataram.distanbun.ntbprov.go.id/-/slot-kamboja/ https://smkppnmataram.distanbun.ntbprov.go.id/-/slot-deposit-pulsa/ https://ebphtb.karimunkab.go.id/log/slot4d/ https://ebphtb.karimunkab.go.id/log/bandar-togel/ http://conference.fortei.unp.ac.id/public/slot-dana/ http://conference.fortei.unp.ac.id/public/slot88/ https://diskop.ntbprov.go.id/.tmb/slot-pulsa/ https://diskop.ntbprov.go.id/.tmb/slot-hoki/ https://simasn.malutprov.go.id/vendor/slot-bonus/ https://simasn.malutprov.go.id/vendor/slot-thailand/ https://asnunggul.lan.go.id/assets/components/components1/ https://asnunggul.lan.go.id/assets/components/components2/ sundaempire787 Poskobet