Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Data Mining

Amrin Amrin, Hafdiarsya Saiyar


It is important for doctors to make an early diagnosis of tuberculosis in order to reduce the transmission of the disease to the wider community. In this study, the authors will apply and compare several methods of data mining classification, including AlgoritmaC4.5, Naïve Bayes, and Neural Network to diagnose tuberculosis disease, then compare which of the three methods are the most accurate. Based on the performance measurement results of the three models using Cross Validation, Confusion Matrix and ROC Curve methods, it is known that Naïve Bayes method is the best method with accuracy of 94.18% and under the curva (AUC) value of 0.977 , then neural network method with accuracy 89,89% and under the curva value (AUC) 0,975, and then C4.5 method with accuracy level equal to 84,56% and under the curva value (AUC) equal to 0,938. This shows that the three models that are produced including the category of classification is very good because it has an AUC value between 0.90-1.00.


Amrin, A. (2016). Data Mining Dengan Regresi Linier Berganda Untuk Peramalan Tingkat Inflasi. Jurnal Techno Nusa Mandiri, XIII(1), 74–79. Retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/index.php/techno/article/view/268

Fine, J. (2012). An Overview Of Statistical Methods in Diagnostic Medicine. Chapel Hill.

Gorunescu, F. (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer.

Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques. Soft Computing (Vol. 54). San Fransisco: Morgan Kauffman. https://doi.org/10.1007/978-3-642-19721-5

Khotari. (2004). Data Mining Concepts and Technique. San Fransisco: Morgan Kauffman.

Kusrini, & Luthfi, E. . (2009). Algoritma Data Mining. Yogyakarta: Andi Publishing.

Liao, T. W. (2007). Recent Advances in Data Mining of Enterprise Data: Algorithms and Application. Singapore: World Scientific Publishing.

Maimon, O., & Rokach, L. (2010). Data Mining And Knowledge Discovery Handbook. New York: Springer.

Myatt, G. J. (2007). Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining. New Jersey: John Wiley & Sons, Inc.

Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

Sogala, S. S. (2006). Comparing the Efficacy of the Decision Trees with Logistic Regression for Credit Risk Analysis. India.

Sumathi, S., & Sivanandam, S. N. (2006). Introduction to Data Mining and its Applications. Berlin Heidelberg New York: Springer.

Vercellis, C. (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann.

DOI: https://doi.org/10.31294/p.v20i2.3932

Copyright (c) 2018 Paradigma - Jurnal Komputer dan Informatika


Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License