Analisa Kelayakan Pemberian Kredit Mobil Dengan Menggunakan Metode Neural Network Model Radial Basis Function

Amrin Amrin

Abstract


Problems are often encountered in the provision of credit is to determine lending decisions to someone, while other issues are not all credit payments can run well. Among the causes are errors of judgment in making credit decisions. In this study will be used  neural network with radial basis function method to analyze the feasibility of providing car loans. From the test results to measure the performance of the method is to use testing methods confusion matrix and ROC curve, it is known that the method of back neural network radial basis function has a value of 89,2% accuracy and AUC value of 0.9471. This shows that the model produced, including the classification is Exellent Clasification because it has the AUC values between 0.90- 1.00.


References


Alpaydin, Ethem. Introduction to Machine Learning. London: The MIT Press., 2010.

Gorunescu, Florin. Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer, 2011.

Han, J.,&Kamber, M. Data Mining Concept and Tehniques. San Fransisco: Morgan Kauffman, 2006.

Kusrini, &Luthfi, E. T. Algoritma Data Mining . Yogyakarta: Andi Publishing, 2009.

Kusumadewi, Sri. Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Teknik Informatika FT UII, 2010.

Larose, D. T. Discovering Knowledge in Data. New Jersey: John Willey & Sons, Inc. , 2005.

Purnomo, Mauridhi Hery, & Kurniawan, Agus. Purnomo, MauridhiSupervised Neural Networks dan Aplikasinya. Yogyakarta: Graha Ilmu, 2006.

Puspitaningrum, Diyah. Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Andi Offset, 2006.

Santosa, Budi. Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu, 2007.

Shukla, A., Tiwari, R., & Kala, R. Real Life Applications of Soft Computing. United States of America : Taylor and Francis Group, LLC., 2010.

Sogala, Satchidananda S. Comparing the Efficacy of the Decision Trees with Logistic Regression for Credit Risk Analysis. India, 2006.

Sumathi, & S., Sivanandam, S.N. Introduction to Data Mining and its Applications. Berlin Heidelberg New York: Springer, 2006.

Venkatesan, P , & Anitha, S. “Application of a Radial Basis Function Neural Network for Diagnosis of Diabetes Mellitus.” Current Science, Vol. 91, NO.9 (2006): 1195-1199.

Vercellis, Carlo. Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.: Vercellis, Carlo (2009). Business Intelligent: Data Mining and OpJohn Willey & Sons, Ltd., 2009.

Witten, I. H., Frank, E., & Hall, M. A. Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher, 2011.




DOI: https://doi.org/10.31294/p.v19i2.2283

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Dewi Sartika No. 289, Cawang, Jakarta Timur Telp : 021-8010836, ext. 202
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License