KLASIFIKASI RETINOPATI DIABETES DENGAN METODE NEURAL NETWORK

Hafdiarsya Saiyar

Abstract


Abstract Diabetic retinopathy (DR) is one of the complications in the retina caused by diabetes. The symptoms shown by patients with DR, among others mikroaneurysms, hemorrhages, hard exudate and soft exudates. These symptoms at a certain intensity can be an indicator of phase (severity) of diabetic retinopathy. DR severity levels are divided into four classes namely: Normal, Non-Proliferative Diabetic Retinopathy (NPDR), Proliferative Diabetic Retinopathy (PDR), and Macular edema (ME) .The system built in this thesis is the detection of diabetic retinopathy level of images obtained from STARE (Structured Analysis of the Retina). There are four main stages to resolve the problems of the pretreatment, extraction of anatomical structures, feature extraction and classification. Pretreatment methods are used including gray image (grayscale), a Gaussian filter, Histogram retinal image with wavelet de noising and Masking. The retinal image using neural network trained with backpropagation algorithm for classification. The resulting performance of this approach is the sensitivity 100% ,  sfesificity 95%, accuracy 96%.

 

Keywords: Diabetic retinopathy, Neural Network, Backpropagation, STARE.


References


Astuti, E. D. Pengantar Jaringan Saraf Tiruan. wonosobo: Star Publishing, 2009.

Bishop, Christpher M. Neural Network for Pettern Recognition. Birmingham: Clarendon Press , 1995.

Dillak, Rocky yefrenes,. dan Harjoko,Agus. Klasifikasi Fase Retinopati Diabetes Menggunakan Backpropagation Neural Network. Yoyakarta: UGM Yoyakarta, 2011.

Doni sihotang, Martini ganontowe bintiri, Rocky yefrenes dillak dan Yoshua sir,. Klasifikasi Citra Diabetic Retinopathy Menggunakan 3D-GLCM Projection. Yogyakarta: Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 2012.

Hoover, A, and Goldbaum, M. Locating the optic nerve in a retinal image using the fuzzy convergence of the Blood Vessel. IEEE Transaction on medical imaging, vol. 19 no. 3, pp. 203 - 210. Reseach : http:/www.ces.clemson.edu/~ahoover/stare. , 2000.

Hoover, A., Kouznetsova, V., and Goldbaum, M. Locating Blood Vessel in Retinal Images by Place-wise Threhsold Probing of a Matched Filter Response. IEEE Transaction on medical imaging , vol. 19 no. 3, pp. 203 - 210. Reseach : http:/www.ces.clemson.edu/~ahoover/stare. , 2000.

K, G. S., & Deepa, D. S. Analysis of Computing Algorithm using Momentum in Neural Networks. Journal of computing volume 3, issue 6 , 163- 166., 2011.

Kauppi, Tommi. Eye Fundus Image Analysis For Automatic Detection Of Diabetic Retinopathy. Finlandia: Lappeenranta University of Technology, 2010.

Kavitha S, Duraiswamy K. Automatic Detection of Hard and Soft Exudates in SCAN VOL. VII NOMOR 3 ISSN : 1978-0087 20 Fundus Images Using Color Histogram Thresholding. European Journal of Scientific Research Vol.48 No.3, pp.493-504, 2011.

Kuivaleinen, M. Retinal Image Analysis Using Machinde Vision. Lappeenranta: Tesis, Departemen of Information Technology, Lappeenranta University of Technology, 2005.

Myatt, G. J. Making Sense of Data A Practical Guide to Exploratory Data Analysis and Data Mining. New Jersey: A John Wiley & Sons, inc., publication., 2007.

National Eye Institute, National Institutes of Health. Available online at: http://www.nei.nih.gov/. [referred 19.1.2010]., t.thn.

Priya, R., Aruna, P. Review of Automated Diagnosis Of Diabetic Retinopathy using The Support Vector Machine. International Journal of Applied Engineering Research, No. 4, Vol. 1, 844-863., 2010.

Purnomo, H. Mauridhi dan A. Muntasa. Konsep Pengolahan Citra Digital dan Ekstraksi fitur. Yogyakarta: Edisi Pertama.Graha Ilmu, 2010.

Purnomo, M. H., & Kurniawan, A. Supervised Neural Network. Suarabaya: Garaha Ilmu, 2006.

Putra, D. Pengolahan Citra Digital. Yogyakarta: Andi Offset, 2010.

Riduan. Dasar-dasar statistika. Bandung: Alfa Beta, 2008.

S, Ilyas. Ilmu Penyakit Mata. Jakarta: Edisi 2, FK UI hal.224-227, 2003.

Shukla, A., Tiwari, R., & Kala, R. Real Life Application of Soft Computing. CRC Press, 2010.

Siahaan, Rodeo Valentino. Prevalensi Retinopati Diabetik di RSUP H. Adam Malik . 2010.

Silberman N, Ahrlich K, Fergus R. Case for Automated Detection of Diabetic Retinopathy. Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), 2010.

Theodoridis, Sergios. and Koutroumbas, Konstantinos. Pattern Recognition Third Edition. San Diego: Third Edition ed.San Diego, USA: Elsevier (USA), 2006.

Vaughan DG, Asbury T, dan Eva PR,. Oftalmologi Umum. Jakarta: Edisi 14, Widya Medika hal.211-214, 2000.

WR, Freeman. Practical Atlas of Retinal Disease and Therapy. Hongkong: Lippincott-Raven page 119-213, 1998.

YANG, J., ZHANG, D., FRANGI, A. F., AND YANG, J. Y. TWO DIMENSIONAL PCA : A NEW APPROACH TO APPEREANCE-BASED FACE REPRESENTATION AND RECOGNITION. IEEE TRANSACTION PATTERN ANALYSIS MACHINE INTELLIGENCE 26 (1), 131-137, 2004.




DOI: https://doi.org/10.31294/p.v19i2.1923



ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Telepon: 021-21231170, ext. 704 / 705
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License