PENGUJIAN ALGORITMA TEKS MINING UNTUK KLASIFIKASI ANALISIS REVIEW APLIKASI HALODOC

Eka Rini Yulia, Kusmayanti Solecha

Abstract


Entering the era of the industrial revolution 4.0 technology is developing very rapidly, information system technology in the health sector is e-health as information and communication technology that is effective and safe in support matters related to the health sector such as health services, health supervision, references on matters relating to health. health matters. Consumers who write reviews, opinions, and experiences in medical teleconsultation continue to increase. Halodoc dataset must be processed using the right algorithm. So the results of this study are to find out which algorithm is better used to get the best algorithm model. Researchers compared several Mining Text classifications, including the C4.5 Algorithm, K-Nearest Neighbor (K-NN), and Support Vector Machine (SVM). The stages of the research carried out were starting from data collection, initial data processing (C4.5, K-NN, and SVM methods), the testing method used was 10-fold cross-validation, evaluation results, and testing using t-test, the proposed method. From the process that has been carried out, the accuracy results obtained using the K-Nearest Neighbor (K-NN) algorithm are 88.50% with an AUC value: of 0.960. Meanwhile, the best model results use the t-test test, namely the algorithm: Support Vector Machine algorithm and the K-NN algorithm in testing the Halodoc dataset.

Keywords


t-test, algorithm, text mining

Full Text:

PDF

References


Ipmawati, J., Kusrini, K., & Luthfi, E. T. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security, 6(1), 28–36.

JianQiang, Z., & Xiaolin, G. (2017). Comparison Research on Text Pre-processing Methods on Twitter Sentiment Analysis (Vol. 5). IEEE Access,. doi:10.1109/ACCESS.2017.2672677

Muthia, D. A. (2017). ANALISIS SENTIMEN PADA REVIEW RESTORAN DENGAN TEKS BAHASA INDONESIA MENGUNAKAN. JURNALILMU PENGETAHUAN DAN TEKNOLOGI KOMPUTER, 2(2), 39–45.

Putra, P. A., & Suryanata, I. G. N. P. (2021). SINERGI HALODOC DALAM MUTU PELAYANAN RUMAH SAKIT DI MASA PANDEMI COVID 19. E-JURNAL EKONOMI DAN BISNIS, 10(04), 211–222.

Taufik, A. (2018). Komparasi Algoritma Text Mining Untuk Klasifikasi Review Hotel. Jurnal Teknik Komputer, IV(2). https://doi.org/10.31294/jtk.v4i2.3461

Rahayuningsih, P. A. (2019, Mei). Komparasi Algoritma Klasifikasi Data Mining untuk. Journal of Information Technology and Computer Science (JOINTECS), 4(2), 63-68.

Symeonidis, S., Effrosynidis, D., & Arampatzis, A. (2018). A comparative evaluation of pre-processing techniques and their interactions for twitter sentiment analysis (Vol. 110). Expert Syst. Appl. doi:10.1016/j.eswa.2018.06.022

Utami, L. A. (2017). ANALISIS SENTIMEN OPINI PUBLIK BERITA KEBAKARAN HUTAN MELALUI KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR BERBASIS PARTICLE SWARM OPTIMIZATION. Jurnal PILAR Nusa Mandiri, 13(1), 103–112.

Utami, L. D., Rachmi, H., Nurlaela, D., Akuntansi, S. I., Bina, U., Informatika, S., … Komputer, I. (2018). KOMPARASI ALGORITMA KLASIFIKASI PADA ANALISIS REVIEW HOTEL. Jurnal PILAR Nusa Mandiri, 14(2), 261–266.

Wibawa, A. P., Guntur, M., Purnama, A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode Klasifikasi. Prosiding Seminar Ilmu Komputer Dan Teknologi Informasi, 3(1), 134–138.




DOI: https://doi.org/10.31294/jtk.v8i2.12690

Copyright (c) 2022 Eka Rini Yulia, Kusmayanti Solecha

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License