Prediksi Siswa SMK Al-Hidayah Yang Masuk Perguruan Tinggi Dengan Metode Klasifikasi
Abstract
Salah satu aspek sebagai indikator kualitas sekolah menengah kejuruan adalah tingkat diterimanya siswa di perguruan tinggi baik itu negeri maupun swasta. Beberapa data siswa sekolah menengah kejuruan dianalisis untuk mengetahui tingkat diterimanya siswa di perguruan tinggi melalui penelusuran siswa. Dengan memprediksi siswa yang masuk perguruan tinggi, bisa dimanfaatkan oleh pihak sekolah untuk bahan promosi. Proses analisis data siswa tersebut menggunakan teknik data mining. Dengan tujuan penelitian ini untuk memprediksi siswa angkatan berikutnya yang masuk di perguruan tinggi negeri maupun swasta menggunakan hasil model klasifikasi yang terbentuk. Pada penelitian ini data yang digunakan adalah data siswa angkatan 2018 dan 2019 Sekolah Menengah Kejuruan AL-Hidayah 1. Yang berjumlah 503 data, setelah dilakukan pre-processing diperoleh data yang siap diolah berjumlah 158 data. Proses data mining dibantu oleh software Rapid Miner menggunakan klasifikasi naïve bayes. Proses evaluasi data membandingkan beberapa algoritma lain yaitu Decision Tree dan KNN. Dan dari hasil pengujian tingkat akurasi tertinggi diantara tiga algoritma yang telah diuji diantaranya Decision Tree dengan nilai akurasi 95.60%, sedangkan naive bayes dengan nilai akurasi 92.40% dan KNN nilai akurasinya 94.96%.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Annur, H. (2019). Penerapan Data Mining Menentukan Strategi Penjualan Variasi Mobil Menggunakan Metode K-Means Clustering. Jurnal Informatika Upgris, 5(1).
Dwi Arum Ningtyas, M. W. & N. N. (2019). Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree , Support Vector Machine Dan Naive Bayes. Jurnal Khatulistiwa Informatika, VII(2), 85–90.
Dwi Herlambang, A., & Hadi wijoyo, S. (2019). Algoritma Naïve Bayes Untuk Klasifikasi Sumber Belajar Naïve Bayes Algorithm for Text Based Learning Resources Classification in Productive Subject At Information and. 6(4), 431–436. https://doi.org/10.25126/jtiik.201961323
Junaidi, A., Dewi, N., Baidawi, T., Agustiani, S., Arifin, Y. T., & Sihotang, H. T. (2020). Expert System Of Syzygium Aqueum Disease Diagnose Using Bayes Method. Journal of Physics: Conference Series, 1641, 12097. https://doi.org/10.1088/1742-6596/1641/1/012097
Kahramanli, H., & Allahverdi, N. (2008). Design of a hybrid system for the diabetes and heart diseases. Expert Systems with Applications, 35(1–2), 82–89. https://doi.org/10.1016/j.eswa.2007.06.004
Kusuma, L. W. (2019). Prediksi Kemampuan Lulusan SMK untuk Dapat Bersaing Di Dunia Kerja dengan Menggunakan Naïve Bayes : Studi Kasus SMK Buddhi Tangerang. 1, 56–63.
Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika, 2(2), 213–219.
Nofriansyah, D., Erwansyah, K., & Ramadhan, M. (2016). Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL ( Studi Kasus di CV. Sumber Utama Telekomunikasi). Jurnal
Saintikom, 15(2), 81–92.
Saifudin, A. (2018). Metode Data Mining Untuk Seleksi Calon Mahasiswa. 10(1), 25–36.
Saikin, S., & Kusrini, K. (2019). Model Data Mining Untuk Karekteristik Data Traveller Pada Perusahaan Tour and Travel. Jurnal Manajemen Informatika Dan Sistem Informasi, 2(2), 61. https://doi.org/10.36595/misi.v2i2.105
Sidik, M., Rasminto, H., & Manongga, D. (2018). Implementasi Data Mining Untuk Prediksi Kelulusan Menggunakan Metode Klasifikasi Naive Bayes. 13–20.
Sugianto, C. A. (2017). Penerapan Teknik Data Mining Untuk Menentukan Hasil Seleksi Masuk Sman 1 Gibeber Untuk Siswa Baru Menggunakan Decision Tree. 39–43. https://doi.org/10.31227/osf.io/vedu7
Suryadi, A. (2016). Sistem Pendukung Keputusan Seleksi Ujian Masuk Perguruan Tinggi Menggunakan Nbc (Naïve Bayes Classifier). Kinetik, 1(3), 173. https://doi.org/10.22219/kinetik.v1i3.120
Sutoyo, I. (2018). Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik. Jurnal Pilar Nusa Mandiri, 14(2), 217. https://doi.org/10.33480/pilar.v14i2.926
Tree, C., Utomo, D. K., Supianto, A. A., & Purnomo, W. (2019). Sistem Prediksi Penerimaan SNMPTN menggunakan Algoritme Decision. 3(9), 9124–9131
Trisaputra, Y. (2016). Klasifikasi Profil Siswa SMA / SMK yang Masuk PTN ( Perguruan Tinggi Negeri ) dengan k-Nearest Neighbor Klasifikasi Profil Siswa SMA / SMK yang Masuk PTN ( Perguruan Tinggi Negeri ) dengan k-Nearest Neighbor Yuandri Trisaputra , Indriyani , Shellafuri Mar. September 2015, 0–15
DOI: https://doi.org/10.31294/ji.v8i1.9163
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Informatika

This work is licensed under a Creative Commons Attribution 4.0 International License.
Index by:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License