Comparative Optimization of EfficientNetB3, MobileNetV2, and ResNet50 for Waste Classification
Abstract
Waste management has become a critical challenge in efforts to maintain environmental sustainability and public health. Poorly managed waste can cause environmental pollution, reduce quality of life, and complicate recycling processes. To address this issue, this study aims to classify waste based on images while optimizing several deep learning architectures, namely EfficientNetB3, MobileNetV2, and ResNet50, to identify the best model for waste classification. The research methodology includes data collection, preprocessing, data augmentation, model development, and performance evaluation using accuracy, precision, recall, and F1-score metrics. The dataset, obtained from the Kaggle platform, consists of 4,650 images divided into six categories: battery, glass, metal, organic, paper, and plastic. The results show that EfficientNetB3 with the Adam optimizer achieved the best performance, with accuracy, precision, recall, and F1-score all at 93%, followed by ResNet50 at approximately 91%, and MobileNetV2 ranging from 70–73% depending on the optimizer. The use of different optimizers was found to influence model performance, and data augmentation helped improve generalization, especially for classes with limited samples. Limitations of this study include the relatively limited dataset coverage. Future research is recommended to expand the dataset and explore alternative or hybrid architectures. These findings demonstrate the potential of deep learning–based systems in supporting sustainable waste management.
Keywords
Full Text:
PDFReferences
Agustin, R., Nurlailli, M., Yuanda, K. P., & Sudamto, B. A. (n.d.). Deteksi Penyakit Daun Padi Menggunakan MobileNetV2 : Pendekatan Deep Learning untuk Meningkatkan Ketahanan Produksi Pangan. 9, 1294–1303.
Agustina, N. P. D. (2025). Klasifikasi Subtipe Leukemia Limfoblastik Akut (LLA) pada Citra Mikroskopis Sel Darah Menggunakan Arsitektur EfficientNet-B3 dengan Dataset Seimbang. Jurnal Locus Penelitian Dan Pengabdian, 4(6), 1–16. https://doi.org/10.58344/locus.v4i6.4321
Akbar, W. F. (2024). Implementasi Transfer Learning Model DenseNet169 untuk Klasifikasi Citra Jenis Sampah. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 11(4).
Anggara, D., Suarna, N., & Arie Wijaya, Y. (2023). Analisa Perbandingan Performa Optimizer Adam, Sgd, Dan Rmsprop Pada Model H5. Networking Engineering Research Operation, 8(1), 53–64. https://doi.org/10.21107/nero.v8i1.19226
Aziz, S. I. P., Aini, M. N., Puspitasari, & Prasetya, B. D. (2025). Manajemen Pengelolaan Sampah : Panduan Pengelolaan Sampah Berbasis Digital Upaya Menuju Desa Sidomulyo Yang Bebas Sampah. Seminar Nasional Penelitian Dan Pengabdian Masyarakat -2025, 87–92.
Irfan, D., Rosnelly, R., Wahyuni, M., Samudra, J. T., & Rangga, A. (2022). Comparison Of Sgd, Adadelta, And Adam Optimization In Hydrangea Classification Using CNN. Journal of Science and Social Research, 5(2), 244–253.
https://jurnal.goretanpena.com/index.php/JSSR/article/view/789
Julia Lingga, L., Yuana, M., Aulia Sari, N., Nur Syahida, H., & Sitorus, C. (2024). Sampah di Indonesia: Tantangan dan Solusi Menuju Perubahan Positif. INNOVATIVE: Journal Of Social Science Research, 4, 12235–12247.
Khadafi, F., & Zer, P. P. P. A. N. W. F. I. R. H. (2025). Jurnal JISIILKOM ( Jurnal Inovasi Sistem Informasi & Ilmu Komputer ) Optimasi Akurasi Backpropagation Dengan Adaptive Moment Estimation Terhadap Kasus Prediksi Deteksi Penyakit Paru-Paru. 3(1).
Munthe, T. P., & Akbar, M. (2025). Klasifikasi Citra Biji Kopi Temangung Menggunakan Residual Network (ResNet-50). Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, Dan Arsitektur Komputer), 5(1), 94–102.
Muslihati, M., Sahibu, S., & Taufik, I. (2024a). Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Jenis Sampah Organik dan Non Organik: Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3), 840–852.
Muslihati, M., Sahibu, S., & Taufik, I. (2024b). Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Jenis Sampah Organik dan Non Organik. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3), 840–852. https://doi.org/10.57152/malcom.v4i3.1346
Pieters, L. S. (2025a). Development of Automatic Waste Classification System using CNN-Based Deep Learning to Support Smart Waste Management. INOVTEK Polbeng-Seri Informatika, 10(1), 214–224.
Pieters, L. S. (2025b). DEVELOPMENT OF AUTOMATIC WASTE CLASSIFICATION SYSTEM USING CNN BASED DEEP LEARNING TO SUPPORT SMART WASTE MANAGEMENT OTOMATIS MENGGUNAKAN DEEP LEARNING BERBASIS. JURNAL INOVTEK POLBENG - SERI INFORMATIKA, 10(1), 214–224.
Pranatha, M. D. A., Setiawan, G. H., & Maricar, M. A. (2024). Utilization of ResNet Architecture and Transfer Learning Method in the Classification of Faces of Individuals with Down Syndrome. Journal of Applied Informatics and Computing, 8(2), 434–442. https://doi.org/10.30871/jaic.v8i2.8474
Rianto, & Santosa, P. I. (2025). Data Preparation untuk Machine Learning & Deep Learning. Penerbit Andi. https://books.google.co.id/books?id=Y5U9EQAAQBAJ
Saptadi, N. T. S., Kristiawan, H., Nugroho, A. Y., Rahayu, N., Suwarmiyati, Waseso, B., Intan, I., Khairunnas, Martono, Saputra, P. Y., Sutriawan, Soekarman, Mahatma, K., Yunianto, I., Soleh, O., Sutoyo, M. N., Siswoyo, B., & Aliyah. (2025). Deep Learning Teori, Algoritma, dan Aplikasi (Issue March).
Sarasuartha Mahajaya, N., Desiana, P., Ayu, W., & Huizen, R. R. (2024). Pengaruh Optimizer Adam, AdamW, SGD, dan LAMB terhadap Model Vision Transformer pada Klasifikasi Penyakit Paru-paru. Spinter 2024, 1(2), 818–823. https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database,
Sihabillah, A., Tholib, A., & Basit, I. I. (2025). Optimasi Model Resnet50 Untuk Klasifikasi Sampah. Indexia, 6(2), 102. https://doi.org/10.30587/indexia.v6i2.9342
Syaifudin, S. (2024). GENERATIVE ADVERSARIAL NETWORKS (GAN) DALAM FOTOGRAFI: MENCIPTAKAN IMAJI DARI NOL. Specta, 8(2), 169–180.
DOI: https://doi.org/10.31294/inf.v12i2.27533
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Sarifah Agustiani, Haryani Haryani, Agus Junaidi, Rizky Rachma Putri, Muhammad Ghaly Adam Z

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License