Batik Pattern Classification Using Logistic Regression, SVM, and Deep Learning Features
Abstract
Keywords
Full Text:
PDFReferences
Adelin, & Sri Handayani, F. (2020). Object-Based Design and Modeling Batik Nusantara Catalog Wibatara.com. Journal of Physics: Conference Series, 1500(1), 012124. https://doi.org/10.1088/1742-6596/1500/1/012124
Alahmadi, A., Hussain, M., & Aboalsamh, H. (2022). LDA-CNN: Linear Discriminant Analysis Convolution Neural Network for Periocular Recognition in the Wild. Mathematics, 10(23). https://doi.org/10.3390/math10234604
Alzahrani, S. S. (2022). Data Mining Regarding Cyberbullying in the Arabic Language on Instagram Using KNIME and Orange Tools. Engineering, Technology & Applied Science Research, 12(5), 9364–9371. https://doi.org/10.48084/etasr.5184
Azhar, Y., Mustaqim, M. C., & Minarno, A. E. (2021). Ensemble convolutional neural network for robust batik classification. IOP Conference Series: Materials Science and Engineering, 1077(1), 012053. https://doi.org/10.1088/1757-899X/1077/1/012053
Danquah, L. K. G., Appiah, S. Y., Mantey, V. A., Danlard, I., & Akowuah, E. K. (2025). Computationally Efficient Deep Federated Learning with Optimized Feature Selection for IoT Botnet Attack Detection. Intelligent Systems with Applications, 25(November 2024), 200462. https://doi.org/10.1016/j.iswa.2024.200462
Divyanth, L. G., Guru, D. S., Soni, P., Machavaram, R., Nadimi, M., & Paliwal, J. (2022). Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed Classification Models for Precision Agriculture Applications. Algorithms, 15(11). https://doi.org/10.3390/a15110401
Feng, Z., & Hua, X. (2020). Pattern Recognition and Its Application in Image Processing. Journal of Physics: Conference Series, 1518(1), 012071. https://doi.org/10.1088/1742-6596/1518/1/012071
Filia, B. J., Lienardy, F. F., Laksana, I. K. P. B., Jordan, J. A., Siento, J.
G., Honova, S. M., Hasana, S., & Permonangan, I. H. (2023). Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset. Procedia Computer Science, 227, 508–517. https://doi.org/10.1016/j.procs.2023.10.552
Huang, Y., Su, J., Wang, J., & Ji, S. (2020). Batik-DG: Improved DeblurGAN for Batik Crack Pattern Generation. IOP Conference Series: Materials Science and Engineering, 790(1), 012034. https://doi.org/10.1088/1757-899X/790/1/012034
Ishak, A., Siregar, K., Aspriyati, Ginting, R., & Afif, M. (2020). Orange Software Usage in Data Mining Classification Method on The Dataset Lenses. IOP Conference Series: Materials Science and Engineering, 1003(1), 012113. https://doi.org/10.1088/1757-899X/1003/1/012113
Jati, E. S., & Hariyadi, A. (2021). Form Finding Architectural Shading Device: Reinterpretation of Batik Pattern through Parametric Approach. IOP Conference Series: Earth and Environmental Science, 764(1), 012002. https://doi.org/10.1088/1755-1315/764/1/012002
Kasim, A. A., Bakri, M., Hendra, A., & Septriani, A. (2022). Spatial and topology feature extraction on batik pattern recognition: a review. Jurnal Informatika, 16(1), 1. https://doi.org/10.26555/jifo.v16i1.a25415
Lô, G., de Boer, V., & van Aart, C. J. (2020). Exploring West African folk narrative texts using machine learning. Information (Switzerland), 11(5). https://doi.org/10.3390/INFO11050236
Maiyang, F., & Taqyuddin. (2021). Assessment of Indramayu batik based on Outstanding Universal Value (OUV) and Geographical Indications (GI). Journal of Physics: Conference Series, 1725(1), 012104. https://doi.org/10.1088/1742-6596/1725/1/012104
Meranggi, D. G. T., Yudistira, N., & Sari, Y. A. (2022). Batik Classification Using Convolutional Neural Network with Data Improvements. JOIV : International Journal on Informatics Visualization, 6(1), 6. https://doi.org/10.30630/joiv.6.1.716
Minarno, A. E., Soesanti, I., & Nugroho, H. A. (2023). Batik Nitik 960 Dataset for Classification, Retrieval, and Generator. Data, 8(4), 63. https://doi.org/10.3390/data8040063
Rachmayanti, S., Salim, P., Roesli, C., & Hartono, H. (2023). Vernacular Architecture Residential in Lasem with Batik Pattern Latohan in Interior. IOP Conference Series: Earth and Environmental Science, 1169(1), 012060. https://doi.org/10.1088/1755-1315/1169/1/012060
Rajpal, S., Agarwal, M., Kumar, V., Gupta, A., & Kumar, N. (2021). Triphasic DeepBRCA-A Deep Learning-Based Framework for Identification of Biomarkers for Breast Cancer Stratification. IEEE Access, 9, 103347–103364. https://doi.org/10.1109/ACCESS.2021.3093616
Rasyidi, M. A., & Bariyah, T. (2020). Batik pattern recognition using convolutional neural network. Bulletin of Electrical Engineering and Informatics, 9(4), 1430–1437. https://doi.org/10.11591/eei.v9i4.2385
Rasyidi, M. A., Handayani, R., & Aziz, F. (2021). Identification of batik making method from images using convolutional neural network with limited amount of data. Bulletin of Electrical Engineering and Informatics, 10(3), 1300–1307. https://doi.org/10.11591/eei.v10i3.3035
Salsabila, A. P. B., Rozikin, C., & Adam, R. I. (2023). Klasifikasi Motif Batik Karawang Berbasis Citra Digital dengan Principal Component Analysis dan K-Nearest Neighbor. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(1), 20. https://doi.org/10.26418/justin.v11i1.46936
Susantio, M., & Widyasari, R. (2023). The Influence of Peranakan Culture on The Typology of The Kidang Mas Batik House, Lasem. IOP Conference Series: Earth and Environmental Science, 1169(1), 012067. https://doi.org/10.1088/1755-1315/1169/1/012067
Trisakti Akbar, Muhammad Fajar B, Muhammad Akbar Amir, Andi Akram Nur Risal, Nur Azizah Ayu Safanah, & M. Miftach Fakhri. (2023). Sulsel Typical Batik Motif Classification Using Neural Network Method With Glcm Feature Extraction. Journal of Deep Learning, Computer Vision and Digital Image Processing, 24–33. https://doi.org/10.61255/decoding.v1i1.49
Widodo, T., Ishak, S. I., Haryato, T., & Santoso, A. B. (2023). Explorasi Pola Batik Baru dengan Deep Convolutional Algorithm Generative Adversarial Networks (DCGANs). Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 18(1), 40. https://doi.org/10.30872/jim.v18i1.9531
Winarno, E., Hadikurniawati, W., Septiarini, A., & Hamdani, H. (2022). Analysis of color features performance using support vector machine with multi-kernel for batik classification. International Journal of Advances in Intelligent Informatics, 8(2), 151. https://doi.org/10.26555/ijain.v8i2.821
Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137, 109347. https://doi.org/10.1016/j.patcog.2023.109347
DOI: https://doi.org/10.31294/inf.v12i2.25855
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ratih Addina Hapsari, Imam Yuadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License