Batik Pattern Classification Using Logistic Regression, SVM, and Deep Learning Features

Ratih Addina Hapsari, Imam Yuadi

Abstract


This study presents the integration of deep learning-based feature extraction with conventional machine learning classifiers for automatically categorizing Indonesian batik patterns. The research utilizes five traditional motifs: Alas Alasan, Kokrosono, Semen Sawat Gurdha, Sido Asih, and Sido Mulyo. Feature extraction was conducted using three deep learning models: Inception V3, VGG16, and VGG19, followed by classification through Logistic Regression and Support Vector Machines (SVM), with data processing performed in Orange. Experimental results show that Inception V3 combined with Logistic Regression achieved the highest classification performance, reaching 99.2% classification accuracy and an F1-score of 0.992. These results confirm the effectiveness of deep feature embeddings in improving the automatic classification of batik motifs. The study contributes to developing intelligent classification frameworks, offering a scalable approach to cultural heritage preservation through technology. Future work will focus on enhancing feature extraction methods and expanding the dataset to address motif overlap challenges.

Keywords


Deep Learning, Batik Pattern Classification, Machine Learning Integration

Full Text:

PDF

References


Adelin, & Sri Handayani, F. (2020). Object-Based Design and Modeling Batik Nusantara Catalog Wibatara.com. Journal of Physics: Conference Series, 1500(1), 012124. https://doi.org/10.1088/1742-6596/1500/1/012124

Alahmadi, A., Hussain, M., & Aboalsamh, H. (2022). LDA-CNN: Linear Discriminant Analysis Convolution Neural Network for Periocular Recognition in the Wild. Mathematics, 10(23). https://doi.org/10.3390/math10234604

Alzahrani, S. S. (2022). Data Mining Regarding Cyberbullying in the Arabic Language on Instagram Using KNIME and Orange Tools. Engineering, Technology & Applied Science Research, 12(5), 9364–9371. https://doi.org/10.48084/etasr.5184

Azhar, Y., Mustaqim, M. C., & Minarno, A. E. (2021). Ensemble convolutional neural network for robust batik classification. IOP Conference Series: Materials Science and Engineering, 1077(1), 012053. https://doi.org/10.1088/1757-899X/1077/1/012053

Danquah, L. K. G., Appiah, S. Y., Mantey, V. A., Danlard, I., & Akowuah, E. K. (2025). Computationally Efficient Deep Federated Learning with Optimized Feature Selection for IoT Botnet Attack Detection. Intelligent Systems with Applications, 25(November 2024), 200462. https://doi.org/10.1016/j.iswa.2024.200462

Divyanth, L. G., Guru, D. S., Soni, P., Machavaram, R., Nadimi, M., & Paliwal, J. (2022). Image-to-Image Translation-Based Data Augmentation for Improving Crop/Weed Classification Models for Precision Agriculture Applications. Algorithms, 15(11). https://doi.org/10.3390/a15110401

Feng, Z., & Hua, X. (2020). Pattern Recognition and Its Application in Image Processing. Journal of Physics: Conference Series, 1518(1), 012071. https://doi.org/10.1088/1742-6596/1518/1/012071

Filia, B. J., Lienardy, F. F., Laksana, I. K. P. B., Jordan, J. A., Siento, J.

G., Honova, S. M., Hasana, S., & Permonangan, I. H. (2023). Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset. Procedia Computer Science, 227, 508–517. https://doi.org/10.1016/j.procs.2023.10.552

Huang, Y., Su, J., Wang, J., & Ji, S. (2020). Batik-DG: Improved DeblurGAN for Batik Crack Pattern Generation. IOP Conference Series: Materials Science and Engineering, 790(1), 012034. https://doi.org/10.1088/1757-899X/790/1/012034

Ishak, A., Siregar, K., Aspriyati, Ginting, R., & Afif, M. (2020). Orange Software Usage in Data Mining Classification Method on The Dataset Lenses. IOP Conference Series: Materials Science and Engineering, 1003(1), 012113. https://doi.org/10.1088/1757-899X/1003/1/012113

Jati, E. S., & Hariyadi, A. (2021). Form Finding Architectural Shading Device: Reinterpretation of Batik Pattern through Parametric Approach. IOP Conference Series: Earth and Environmental Science, 764(1), 012002. https://doi.org/10.1088/1755-1315/764/1/012002

Kasim, A. A., Bakri, M., Hendra, A., & Septriani, A. (2022). Spatial and topology feature extraction on batik pattern recognition: a review. Jurnal Informatika, 16(1), 1. https://doi.org/10.26555/jifo.v16i1.a25415

Lô, G., de Boer, V., & van Aart, C. J. (2020). Exploring West African folk narrative texts using machine learning. Information (Switzerland), 11(5). https://doi.org/10.3390/INFO11050236

Maiyang, F., & Taqyuddin. (2021). Assessment of Indramayu batik based on Outstanding Universal Value (OUV) and Geographical Indications (GI). Journal of Physics: Conference Series, 1725(1), 012104. https://doi.org/10.1088/1742-6596/1725/1/012104

Meranggi, D. G. T., Yudistira, N., & Sari, Y. A. (2022). Batik Classification Using Convolutional Neural Network with Data Improvements. JOIV : International Journal on Informatics Visualization, 6(1), 6. https://doi.org/10.30630/joiv.6.1.716

Minarno, A. E., Soesanti, I., & Nugroho, H. A. (2023). Batik Nitik 960 Dataset for Classification, Retrieval, and Generator. Data, 8(4), 63. https://doi.org/10.3390/data8040063

Rachmayanti, S., Salim, P., Roesli, C., & Hartono, H. (2023). Vernacular Architecture Residential in Lasem with Batik Pattern Latohan in Interior. IOP Conference Series: Earth and Environmental Science, 1169(1), 012060. https://doi.org/10.1088/1755-1315/1169/1/012060

Rajpal, S., Agarwal, M., Kumar, V., Gupta, A., & Kumar, N. (2021). Triphasic DeepBRCA-A Deep Learning-Based Framework for Identification of Biomarkers for Breast Cancer Stratification. IEEE Access, 9, 103347–103364. https://doi.org/10.1109/ACCESS.2021.3093616

Rasyidi, M. A., & Bariyah, T. (2020). Batik pattern recognition using convolutional neural network. Bulletin of Electrical Engineering and Informatics, 9(4), 1430–1437. https://doi.org/10.11591/eei.v9i4.2385

Rasyidi, M. A., Handayani, R., & Aziz, F. (2021). Identification of batik making method from images using convolutional neural network with limited amount of data. Bulletin of Electrical Engineering and Informatics, 10(3), 1300–1307. https://doi.org/10.11591/eei.v10i3.3035

Salsabila, A. P. B., Rozikin, C., & Adam, R. I. (2023). Klasifikasi Motif Batik Karawang Berbasis Citra Digital dengan Principal Component Analysis dan K-Nearest Neighbor. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(1), 20. https://doi.org/10.26418/justin.v11i1.46936

Susantio, M., & Widyasari, R. (2023). The Influence of Peranakan Culture on The Typology of The Kidang Mas Batik House, Lasem. IOP Conference Series: Earth and Environmental Science, 1169(1), 012067. https://doi.org/10.1088/1755-1315/1169/1/012067

Trisakti Akbar, Muhammad Fajar B, Muhammad Akbar Amir, Andi Akram Nur Risal, Nur Azizah Ayu Safanah, & M. Miftach Fakhri. (2023). Sulsel Typical Batik Motif Classification Using Neural Network Method With Glcm Feature Extraction. Journal of Deep Learning, Computer Vision and Digital Image Processing, 24–33. https://doi.org/10.61255/decoding.v1i1.49

Widodo, T., Ishak, S. I., Haryato, T., & Santoso, A. B. (2023). Explorasi Pola Batik Baru dengan Deep Convolutional Algorithm Generative Adversarial Networks (DCGANs). Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 18(1), 40. https://doi.org/10.30872/jim.v18i1.9531

Winarno, E., Hadikurniawati, W., Septiarini, A., & Hamdani, H. (2022). Analysis of color features performance using support vector machine with multi-kernel for batik classification. International Journal of Advances in Intelligent Informatics, 8(2), 151. https://doi.org/10.26555/ijain.v8i2.821

Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognition, 137, 109347. https://doi.org/10.1016/j.patcog.2023.109347




DOI: https://doi.org/10.31294/inf.v12i2.25855

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ratih Addina Hapsari, Imam Yuadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License