Opinion Mining on Spotify Music App Reviews Using Bidirectional LSTM and BERT
Abstract
The increasing number of user reviews on digital music platforms such as Spotify highlights the importance of sentiment analysis to better understand user perceptions. This study aims to develop a sentiment classification model for Spotify user reviews using a Bidirectional Long Short-Term Memory (BiLSTM) approach combined with BERT embeddings. The dataset consists of multilingual user reviews collected from the Google Play Store. Preprocessing steps include text cleaning, tokenization, and padding. BERT is utilized to generate contextual word embeddings, which are then processed by the BiLSTM model to classify sentiments as either positive or negative. The model’s performance is evaluated using a confusion matrix with accuracy, precision, recall, and F1-score metrics. The results show that the BiLSTM-BERT model achieves an F1-score of 0.8852, a recall of 0.9396, a precision of 0.8375, and an accuracy of 0.8374. These findings demonstrate the model’s effectiveness in handling multilingual sentiment analysis tasks, offering valuable insights for developers in enhancing user experience through data-driven decision-making.
Keywords
Full Text:
PDFReferences
Aldabbas, Hamza, Abdullah Bajahzar, Meshrif Alruily, Ali Adil Qureshi, Rana M. Amir Latif, and Muhammad Farhan. 2020. “Google Play Content Scraping and Knowledge Engineering Using Natural Language Processing Techniques with the Analysis of User Reviews.” Journal of Intelligent Systems 30(1):192–208. doi: 10.1515/jisys-2019-0197.
Anhar, Refany, Teguh Bharata Adji, and Noor Akhmad Setiawan. 2019. “Question Classification on Question-Answer System Using Bidirectional-LSTM.” Proceedings - 2019 5th International Conference on Science and Technology, ICST 2019 1–5. doi: 10.1109/ICST47872.2019.9166190.
Asghar, Muhammad Zubair, Fazli Subhan, Hussain Ahmad, Wazir Zada Khan, Saqib Hakak, Thippa Reddy Gadekallu, and Mamoun Alazab. 2021. “Senti-ESystem: A Sentiment-Based ESystem-Using Hybridized Fuzzy and Deep Neural Network for Measuring Customer Satisfaction.” Software - Practice and Experience 51(3):571–94. doi: 10.1002/spe.2853.
Chinnalagu, Anandan, and Ashok Kumar Durairaj. 2021. “Context-Based Sentiment Analysis on Customer Reviews Using Machine Learning Linear Models.” PeerJ Computer Science 7. doi: 10.7717/PEERJ-CS.813.
David, Jeniffer, Jiarong Cui, and Fatemeh Rahimi. 2020. “Classification of Imbalanced Dataset Using Bert Embeddings.”
Fhadli, Muhammad, Alfanugrah A. Hi Usman, Amal Khairan, Universitas Khairun, Jl Pertamina Kampus, I. I. Unkhair, Gambesi Kota, Ternate Selatan, and Nama Nama. 2022. “Pelatihan Machine Learning Menggunakan Bahasa Pemrograman Python Di Lingkungan Komunitas Teknologi Informasi Di Kota Ternate.” TRIDARMA : Pengabdian Kepada Masyarakat 5(2).
Firdaus, Ali, and Wahyu Istalama Firdaus. 2021. “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan).” Jurnal JUPITER 13(1):66.
Heryanto, A., and R. Pramudita. 2020. “Opini Media Sosial Facebook Terhadap Produk Hijab Menggunakan Metode Text Mining.” Information System for … 4(2):168–77.
Imrana, Yakubu, Yanping Xiang, Liaqat Ali, and Zaharawu Abdul-Rauf. 2021. “A Bidirectional LSTM Deep Learning Approach for Intrusion Detection.” Expert Systems with Applications 185(July):115524. doi: 10.1016/j.eswa.2021.115524.
Indrawati, Ariani. 2021. “PENERAPAN TEKNIK KOMBINASI OVERSAMPLING DAN UNDERSAMPLING UNTUK MENGATASI PERMASALAHAN IMBALANCED DATASET.” JIKO(Jurnal Informatika Dan Komputer) 4(1):38–43. doi: 10.33387/jiko.
Jahangir, Hamidreza, Hanif Tayarani, Saleh Sadeghi Gougheri, Masoud Aliakbar Golkar, Ali Ahmadian, and Ali Elkamel. 2021. “Deep Learning-Based Forecasting Approach in Smart Grids with Micro-Clustering and Bi-Directional LSTM Network.” IEEE Transactions on Industrial Electronics 68(9):8298–8309. doi: 10.1109/TIE.2020.3009604.
Josi, Gabriel Putra, Weni A. Arindawati, and Nurkinan. 2020. “Motif Penggunaan Aplikasi Musik Spotify Pada Generasi-Z Di SMA XYZ Bekasi.” Warta ISKI 3(02):154–59. doi: 10.25008/wartaiski.v3i02.64.
Karim, Md Rezaul, Bharathi Raja Chakravarthi, John P. McCrae, and Michael Cochez. 2020. “Classification Benchmarks for Under-Resourced Bengali Language Based on Multichannel Convolutional-LSTM Network.” Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020 390–99. doi: 10.1109/DSAA49011.2020.00053.
Khan, Lal, Ammar Amjad, Kanwar Muhammad Afaq, and Hsien Tsung Chang. 2022. “Deep Sentiment Analysis Using CNN-LSTM Architecture of English and Roman Urdu Text Shared in Social Media.” Applied Sciences (Switzerland) 12(5). doi: 10.3390/app12052694.
Liu, Gang, and Jiabao Guo. 2019. “Bidirectional LSTM With Attention Mechanism and Convolutional Layer for Text Classification.” Neurocomputing 337:325–38. doi: 10.1016/j.neucom.2019.01.078.
Locarso, George Kenneth. 2022. “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan NBC.” Jurnal Teknik Informatika Kaputama (JTIK) 6(2):353–61.
Otter, Daniel W., Julian R. Medina, and Jugal K. Kalita. 2021. “A Survey of the Usages of Deep Learning for Natural Language Processing.” IEEE Transactions on Neural Networks and Learning Systems 32(2):604–24. doi: 10.1109/TNNLS.2020.2979670.
Pandika Pinata, Ngakan Nyoman, I. Made Sukarsa, and Ni Kadek Dwi Rusjayanthi. 2020. “Prediksi Kecelakaan Lalu Lintas Di Bali Dengan XGBoost Pada Python.” Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) 8(3):188. doi: 10.24843/jim.2020.v08.i03.p04.
Prihatno, Aji Teguh, Himawan Nurcahyanto, Md Faisal Ahmed, Md Habibur Rahman, Md Morshed Alam, and Yeong Min Jang. 2021. “Forecasting PM2.5 Concentration Using a Single-Dense Layer BiLSTM Method.” Electronics (Switzerland) 10(15). doi: 10.3390/electronics10151808.
Rachman, Adhe Dezty Chajannah, Rito Goejantoro, and Fidia Deny Tisna Amijaya. 2020. “Implementasi Text Mining Pengelompokkan Dokumen Skripsi Menggunakan Metode K-Means Clustering.” Jurnal EKSPONENSIAL 11(2):167–74.
Rahayu, Ayu Sri, Ahmad Fauzi, and Rahmat. 2022. “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine ( SVM ) Pada Analisis Sentimen Spotify.” Jurnal Sistem Komputer Dan Informatika (JSON) 4:349–54. doi: 10.30865/json.v4i2.5398.
Ratna, Silvia. 2020. “Pengolahan Citra Digital Dan Histogram Dengan Phyton Dan Text Editor Phycharm.” Technologia: Jurnal Ilmiah 11(3):181. doi: 10.31602/tji.v11i3.3294.
Varghese, Akson Sam, Saleha Sarang, Vipul Yadav, Bharat Karotra, and Niketa Gandhi. 2019. “Bidirectional LSTM Joint Model for Intent Classification and Named Entity Recognition in Natural Language Understanding.” International Journal of Hybrid Intelligent Systems 16(1):13–23. doi: 10.3233/his-190275.
Verma, Sanjeev. 2022. “Sentiment Analysis of Public Services for Smart Society: Literature Review and Future Research Directions.” Government Information Quarterly 39(3):101708. doi: 10.1016/j.giq.2022.101708.
Wahyudi, Rizki, and Gilang Kusumawardana. 2021. “Analisis Sentimen Pada Aplikasi Grab Di Google Play Store Menggunakan Support Vector Machine.” Jurnal Informatika 8(2):200–207. doi: 10.31294/ji.v8i2.9681.
Yu, Y., J. Chen, F. Mehraliyev, S. Hu, S. Wang, and ... 2024. “Exploring the Diversity of Emotion in Hospitality and Tourism from Big Data: A Novel Sentiment Dictionary.” International Journal of …. doi: 10.1108/ijchm-08-2023-1234.
DOI: https://doi.org/10.31294/inf.v12i2.25323
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Primandani Arsi, Reza Arief Firmanda, Iphang Prayoga, Pungkas Subarkah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License