Sentiment Analysis of #Saverafah Hashtag on TikTok Using Naive Bayes and Decision Tree Methods

Nisa Pirsingki, Rizky Wandri

Abstract


Social media facilitates user communication, both in positive, negative and neutral aspects. One of the popular platforms today is Tiktok, where users can create short videos and interact through comments or private messages, as well as follow the latest news, including the major conflict between Palestine and Israel that has been going on since 1948. In this war, many Palestinian civilians, including children and the elderly, became victims, and are currently trying to flee to Rafah to seek protection. This study aims to analyze public sentiment towards the news of Palestinian refugees heading to Rafah, using two classification methods: Naive Bayes and Decision Tree. Before classification, the data goes through a preprocessing process and TF-IDF weighting, and the two methods are compared to determine the best accuracy. The results showed that the Naive Bayes Multinomial method with the application of SMOTE produced an accuracy of 85.43%, a precision of 86.22%, a recall of 85.43%, and an f1-score of 85.53%. Meanwhile, the Decision Tree C4.5 method with the application of SMOTE produced an accuracy of 94.23%, a precision of 94.58%, a recall of 94.23%, and an f1-score of 94.22%. Based on the evaluation results, the best method for sentiment analysis of the hashtag #SaveRafah is Decision Tree C4.5.

Keywords


Sentiment Analysis, #Saverafah, Tiktok, Naive Bayes, Decision Tree

Full Text:

PDF

References


Abror, N., Novita, R., Mustakim, & Afdal, M. (2024). Sentiment Analysis on the Impact of Artificial Intelligence (AI) Development to Determine Technology Needs. In Jurnal Sistem Cerdas.

Adiyanto, A. T., & Handayani, D. (2022). Information Retrieval Sistem Kearsipan Pencarian Dokumen Di Dinas Pemberdayaan Perempuan Dan Perlindungan Anak Kota Semarang Menggunakan Metode Vector Space Model. Jurnal Mahajana Informasi, 7(1).

Alfiah Zulqornain, J., & Pandu Adikara, P. (2021). Analisis Sentimen Tanggapan Masyarakat Aplikasi Tiktok Menggunakan Metode Naïve Bayes dan Categorial Propotional Difference (CPD). Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(7), 2886–2890. http://j-ptiik.ub.ac.id

Andy Satria, M.Taufiq Kurniawan, Putri Imilia Amanda, & Daniyal Arkan. (2024). Social Media Instagram, Tiktok, dan X Dalam Pengungkapan Pelanggaran Hukum Dalam Konflik Antara Palestina Dan Israel. Jurnal Teknik Informatika Dan Teknologi Informasi, 4(1), 14–27. https://doi.org/10.55606/jutiti.v4i1.3419

Ansori, Y., & Holle, K. F. H. (2022). Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter. Jurnal Sistem Dan Teknologi Informasi (JustIN), 10(4), 429. https://doi.org/10.26418/justin.v10i4.51784

Aprilyana, D. P., Priatna, W., & Setiawati, S. (2024). Implementasi Algoritma Naïve Bayes dan Algoritma C4.5 Untuk Melakukan Analisis Sentimen terhadap Ulasan Komentar Pengguna TikTok di Google Play Store. Jurnal Pelita Teknologi, 19(1), 34–50.

Ardiansyah, D., Saepudin, A., Aryanti, R., & Fitriani, E. (2023). Analisis Sentimen Review Pada Aplikasi Media Sosial Tiktok Menggunakan Algoritma K-NN Dan SVM Berbasis PSO. Jl. Kramat Raya, 7(2).

Astuti, T., & Astuti, Y. (2022). Analisis Sentimen Review Produk Skincare Dengan Naïve Bayes Classifier Berbasis Particle Swarm Optimization (PSO). Jurnal Media Informatika Budidarma, 6(4), 1806. https://doi.org/10.30865/mib.v6i4.4119

Cahya, Ega. N. (2022). Agresi Israel Terhadap Palestina Yang Berujung Pelanggaran Hak Asasi Manusia Pada Palestina. Jurnal Pendidikan PKN, 3(1), 43–56.

Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE. AITI: Jurnal Teknologi Informasi, 18(Agustus), 173–184.

Chrismonica. (2024, February 19). Mengenal Kota Rafah: Sejarah, Lokasi, dan Kondisi Sekarang. Orami. https://www.orami.co.id/magazine/kota-rafah

Fauzia Putri, A., Ernawati, I., & Muliawati, A. (2022). Analisis Sentimen Pengguna Twitter Terhadap PSBB Di Jakarta Menggunakan Metode Naïve Bayes Classifier. In Seminar Nasional Informatika.

Gunawan, B., Sasty, H., #2, P., Esyudha, E., & #3, P. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 4(2), 17–29. www.femaledaily.com

Habibi, M. K., Normansyah, A. D., & Khoerudin, C. M. (2023). Peran Warga Negara Melalui Media Sosial Dalam Membentuk Opini Publik. Triwikrama: Jurnal Ilmu Sosial, 4(12), 1–9.

Hanafiah, A., Haza Nasution, A., Arta, Y., Wandri, R., Nasution, H. O., & Mardafora, J. (2023). Sentiment Analysis Of Customer Reviews Of Shopee Products Based On Wordcloud Using Naïve Bayes Classifier Algorithm. Journal of Information Technology and Computer Science (INTECOMS), 6(1).

Ichwanusafa, R., & Aji, M. P. (2024). Pengaruh Media Sosial Tiktok Terhadap Tingkat Partisipasi Politik Mahasiswa Generasi Z di UPN Veteran Jakarta. Pengaruh Media Sosial Tiktok, 2(4), 329–337. https://doi.org/10.5281/zenodo.11199238

Ipmawati, joang., kusrini., & taufiq luthfi, emha. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security, 6(1), 28–36.

Irsyad, H., & Taqwiym, A. (2021). Sentimen Analisis Masyarakat Terhadap Rakyat Palestina dengan Klasifikasi Naive Bayes. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem & Komputer, 1(2), 167–176.

Khotimah, Y. N., Nuzulia Armariena, D., & Murniviyanti, L. (2024). Krisis Kesantunan Masyarakat Indonesia dalam Sosial Media Tiktok pada Postingan Kolom Komentar Fujianti Utami: Studi Kasus Pelanggaran Maksim Kesantunan. In Indonesian Research Journal on Education (Vol. 4). https://irje.org/index.php/irje

Kusnadi, E., Reni, D., & Annisa, N. (2023). Dampak Media Sosial Tiktok Terhadap Pembentukan Kesadaran Politik Peserta Didik Dalam Berkewarganegaraan. In AoEJ: Academy of Education Journal (Vol. 14).

Kusuma, I. H., & Cahyono, N. (2023). Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor. Jurnal Informatika Jurnal Pengembangan It, 8(3), 302–307. https://doi.org/10.30591/jpit.v8i3.5734

Ma’rifah, H., Wibawa, A. P., & Akbar, M. (2020). Klasifikasi Artikel Ilmiah Dengan Berbagai Skenario Preprocessing. Sains Aplikasi Komputasi Dan Teknologi Informasi, 2(2), 70. https://doi.org/10.30872/jsakti.v2i2.2681

Mudore, S. B. (2019). Peran Diplomasi Indonesia Dalam Konflik Israel-Palestina. Jurnal CMES, 12(2), 170–181.

Mufidati Nur Edma, W. N., Andini, E. N., & Widodo, I. (2024). Analisis Sentimen Pada Pengguna Tiktok Menggunakan Metode Random Forest (Studi Kasus: Jessica-Mirna). Journal Of Social Science Research, 4(3), 14477–14489.

Muktafin, E. H., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen Pada Ulasan Pembelian Abror, N., Novita, R., Mustakim, & Afdal, M. (2024). Sentiment Analysis on the Impact of Artificial Intelligence (AI) Development to Determine Technology Needs. In Jurnal Sistem Cerdas.

Munandar, A., syafaat yaasin, M., Ardian Firdaus, R., & Syarif Hidayatullah Jakarta, U. (2023). Analisis Sentimen Netizen Indonesia Mengenai Boikot Produk. Tauhidinomics: Journal of Islamic Banking and Economics, 3(1), 23–40.

Pramayasa, K., Md, I., Maysanjaya, D., Ayu, G., & Diatri Indradewi, A. (2023). Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE. SINTECH Journal, 2(6), 89–98. https://doi.org/10.31598

Ramadhan, F. A. (2023). Peran Hukum Internasional dalam Menengahi Konflik Israel-Palestina pada Tahun. Rio Law Jurnal, 5(1), 314–328. https://doi.org/10.36355/.v1i2

Ramanizar, H., Fajri, A., Binsar Sinaga, R., Mubarok, H., Pangestu, A. D., & Prasvita, D. S. (2021). Analisis Sentimen Pengguna Twitter terhadap Konflik antara Palestina dan Israel Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine. In Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia.

Sabiah Vitry, H., Ummatin, K., Hasni Azzahra, M., Putri Amanda, A., &

Permata Suci, D. (2023). Konflik Israel Dan Palestina “Analisis Manajemen Konflik Yang Mempengaruhi Mental Health Anak Anak Palestina.” Jurnal Multidisiplin Ilmu Sosial , 2(2), 2023–2024.

Setiawan, M. J., & Nastiti, V. R. S. (2024). DANA App Sentiment Analysis: Comparison of XGBoost, SVM, and Extra Trees. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 13(3), 337–345. https://doi.org/10.32736/sisfokom.v13i3.2239

Sholihah, N., Abdulloh, F. F., & Rahardi, M. (2024). Sentiment Analysis on KPU Performance Post-2024 Election via YouTube Comments Using BERT. Sinkron, 8(4), 2222–2232. https://doi.org/10.33395/sinkron.v8i4.14040

Soper, D. S. (2021). Greed Is Good: Rapid Hyperparameter Optimization and Model Selection Using Greedy K-Fold Cross Validation. Electronics, 10(16), 1973. https://doi.org/10.3390/electronics10161973

Syarifuddinn, M. (2020). Analisis Sentimen Opini Publik Terhadap Efek PSBB Pada Twitter Dengan Algoritma Decision Tree, KNN, Dan Naïve Bayes. INTI Nusa Mandiri, 15(1), 87–94. https://doi.org/10.33480/inti.v15i1.1433

Wandri, R., Setiawan, P. R., Arta, Y., & Hanafiah, A. (2024). Designing a Learning Game for Elementary School Students in Learning Mathematics using a Mobile Platform. Jurnal Sistem Informasi, 13(3), 1139–1146. http://sistemasi.ftik.unisi.ac.id

Wardhani, F. H., & Lhaksmana, K. M. (2022). Predicting Employee Attrition Using Logistic Regression With Feature Selection. Sinkron, 7(4), 2214–2222. https://doi.org/10.33395/sinkron.v7i4.11783

Zuhriyah, U. (2024, May 8). Kenapa Israel Serang Rafah dan Bagaimana Kondisi Palestina Kini? Tirto. https://tirto.id/kenapa-israel-menyerang-rafah-dan-kondisi-palestina-kini-gYt1




DOI: https://doi.org/10.31294/inf.v12i1.24537

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nisa Pirsingki, Rizky Wandri

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License