Digital Marketing Strategy Optimization Using Support Vector Machine Algorithm

Ihsan AlFauzi, Budiman Budiman, Nur Alamsyah

Abstract


Information and communication technology (ICT) is essential in rapidly disseminating information. This research discusses the influence of ICT use in marketing promotions through TV, radio, and social media and compares the performance of several classification algorithms in processing the promotion data. The dataset is from Kaggle, with promotional attributes on TV, radio, and social media. The Cross-Industry Standard Process for Data Mining (CRISP-DM) is used. Algorithms tested include Naive Bayes, K-Nearest Neighbor, Support Vector Machine (SVM), Random Forest, and XGBoost. The results showed that SVM had the best performance with 80% accuracy, followed by KNN (79%), Naive Bayes (77%), XGBoost (77%), and Random Forest (76%). SVM provided the most accurate and consistent predictions in marketing promotion classification. This research concludes that the optimal utilisation of ICT and the application of appropriate classification algorithms can increase the effectiveness of marketing promotions in the digital era.


Keywords


Marketing Promotion, Classification Algorithms, , Information and communication technology

Full Text:

PDF

References


Al-Ababneh, H. A. (2024). Information technologies and their impact on electronic marketing. E3S Web of Conferences, 474, 02010. https://doi.org/10.1051/e3sconf/202447402010

Alamsyah, N., Budiman, B., Parama Yoga, T., & Rakhman Alamsyah, R. Y. (2024). A stacking ensemble model with SMOTE for improved imbalanced classification on credit data. Telkomnika (Telecommunication Computing Electronics and Control), 22(3), 657. https://doi.org/10.12928/telkomnika.v22i3.25921

Alamsyah, N., Budiman, Danestiara, V. R., Akbar, I., & Setiana, E. (2023). Optimising Computational Efficiency in Feature Selection for Machine Learning Models: A Study Crime Detection Based on Criminal Data. 2023 Eighth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC60109.2023.10382057

Alamsyah, N., Yoga, T. P., & Budiman, B. (2024). Improving Traffic Density Prediction Using Lstm With Parametric Relu (Prelu) Activation. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 154–160. https://doi.org/10.33480/jitk.v9i2.5046

Alfi, M. (2019). Analisis Sentimen Berdasarkan Knowledge Pattern dan Learning Vector Quantization. 9–18.

Amalia Yunia Rahmawati. (2020). Pengenalan Data Mining (Issue July).

APJII. (2023). Survei APJII Pengguna Internet di Indonesia Tembus 215 Juta. https://apjii.or.id/berita/d/survei-apjii-pengguna-internet-di-indonesia-tembus-215-juta-orang

Ardilla, Y., Manuhutu, A., Ahmad, N., Hasbi, I., Manuhutu, M. A.,

Ridwan, M., Wardhani, A. K., & others. (2021). Data Mining Dan Aplikasinya. Penerbit Widina.

Budiman, B. (2021). Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Minat Calon Mahasiswa Baru. Nuansa Informatika, 15(2), 37–52. https://doi.org/10.25134/nuansa.v15i2.4162

Budiman, B., Nursyanti, R., Alamsyah, R. Y. R., & Akbar, I. (2020). Data Mining Implementation Using Naïve Bayes Algorithm and Decision Tree J48 In Determining Concentration Selection. 1(3).

Givari, M. R., Sulaeman, M. R., & Umaidah, Y. (2022). Perbandingan Algoritma SVM, Random Forest Dan XGBoost Untuk Penentuan Persetujuan Pengajuan Kredit. Nuansa Informatika, 16(1), 141–149. https://doi.org/10.25134/nuansa.v16i1.5406

Harun, R., Pelangi, K. C., & Lasena, Y. (2020). Penerapan Data Mining untuk Menentukan Potensi Hujan Harian dengan Menggunakan Algoritma K Nearest Neighbor (KNN). Jurnal Manajemen Informatika Dan Sistem Informasi, 3(1), 8–15.

Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access, 8, 90847–90861. https://doi.org/10.1109/ACCESS.2020.2994222

Indrayana, R., & Solikhin, M. (2020). Analisis Sentimen Pada Media Sosial Twitter. Seminar Nasional Pendidikanipa Danmatematika, 12(1), 79–86.

Kurdi, B., Alshurideh, M., Akour, I., Alzoubi, H., Obeidat, B., & AlHamad, A. (2022). The role of digital marketing channels on consumer buying decisions through eWOM in the Jordanian markets. International Journal of Data and Network Science, 6(4), 1175–1186.

Malik, R., Kusumadinata, A. A., & Hasbiyah, D. (2023). Keragaman Media Sosial Instagram Sebagai Media Promosi. Karimah Tauhid, 2(1), 26–35.

Monika, I. P., & Furqon, M. T. (2018). Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10), 3165–3166.

Polamuri, S. R., Srinivas, K., & Mohan, A. K. (2019). Stock market prices prediction using random forest and extra tree regression. Int. J. Recent Technol. Eng, 8(1), 1224–1228.

Puspitarini, D. S., & Nuraeni, R. (2019). Pemanfaatan media sosial sebagai media promosi. Jurnal Common, 3(1), 71–80.

Saud Abd, N., Salim Atiyah, O., Taher Ahmed, M., & Bakhit, A. (2024). Digital Marketing Data Classification by Using Machine Learning Algorithms. Iraqi Journal for Electrical and Electronic Engineering, 20(1), 245–256. https://doi.org/10.37917/ijeee.20.1.23

Shafila, G. A. (2020). Implementasi Metode Extreme Gradient Boosting (Xgboost ) untuk Klasifikasi pada Data Bioinformatika (Studi Kasus: Penyakit Ebola , GSE 122692). Dspace.Uii.Ac.Id, 1–77.

Syarli, & Muin, A. A. (2016). Metode Naive Bayes Untuk Prediksi Kelulusan. Jurnal Ilmiah Ilmu Komputer, 2(1), 22–26.

Ting, K. M. (2017). Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining (Issue October, pp. 260–260). Springer US. https://doi.org/10.1007/978-1-4899-7687-1_50

Wawolumaya, E. D., Tampi, D. L., Rogahang, J. J., & ... (2022). Analisis Strategi Pemasaran Dalam Upaya Meningkatkan Volume Penjualan Pada Rose Collection. … : Journal Of …, 134–141.

Yoedtadi, M. G. (2019). Tv Sosial: Televisi dan Media Sosial. Konferensi Nasional Komunikasi Humanis, November 2019, 2.

Yoesoep, R. E. (2022). Manajemen Pemasaran. In Eureka Media Aksara.

Yunial, agus heri. (2020). Analisa Perbandingan Algoritma Klasifikasi Support Vector Machine, Decession Tree Dan Naive Bayes. Prosiding Seminar Informatika Dan Sistem Informasi, 5(2), 138–156.




DOI: https://doi.org/10.31294/inf.v12i1.22459

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ihsan AlFauzi, Budiman Budiman, Nur Alamsyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
 Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License