Stock Price Prediction on IDX30 Index using Long Short-Term Memory Algorithm
Abstract
The capital market plays a significant role in a country's economy, facilitating corporate financing and providing investment opportunities for the public. One popular investment instrument is stocks, yet many investors struggle to make profitable investment decisions due to a lack of understanding of stock investments. Therefore, predicting stock prices can be a way to determine the future value of a stock. This research aims to address this issue by applying the Long Short-Term Memory (LSTM) algorithm to predict stock prices on the IDX30 index. LSTM is capable of processing sequential data, such as stock price data, complexly because it can store information over long periods. The testing is conducted using various parameters in layers, epochs, and time steps to obtain the best prediction model. The LSTM architecture used consists of four layers: the LSTM layer with 128 neurons, dropout and dense layers with 64 neurons, and an additional dense layer that converts the output from the previous layer into prediction results. This study demonstrates that the LSTM algorithm can accurately predict stock prices based on evaluation metrics such as Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The best results for PT Bank Central Asia Tbk show a MAPE of 1.14% and RMSE of 137.71, PT Bank Rakyat Indonesia Tbk shows a MAPE of 1.58% and RMSE of 87.4, and PT Bank Mandiri Tbk shows a MAPE of 1.64% and RMSE of 88.26.
Keywords
Full Text:
PDFReferences
Belyadi, H., & Haghighat, A. (2021). Introduction to machine learning and Python. Machine Learning Guide for Oil and Gas Using Python, 1–55. https://doi.org/10.1016/B978-0-12-821929-4.00006-8
Khumaidi, A., & Ayu Nirmala, I. (2022). Algoritma Long Short Term Memory dengan Hyperparameter Tuning: Prediksi Penjualan Produk. Deepublish.
Budiprasetyo, G., Hani’ah, M., & Aflah, D. Z. (2023). Prediksi Harga Saham Syariah Menggunakan Algoritma Long Short-Term Memory (LSTM). Jurnal Nasional Teknologi Dan Sistem Informasi, 8(3), 164–172. https://doi.org/10.25077/teknosi.v8i3.2022.164-172
Fudji, O., & Mar’ati, S. (n.d.). Mengenal Pasar Modal (Instrumen Pokok Dan Proses Go Public).
Kurnia Sari, W., Palupi Rini, D., Firsandaya Malik, R., & Saladin Azhar, I. B. (2020). Klasifikasi Teks Multilabel pada Artikel Berita Menggunakan Long Short-Term Memory dengan Word2Vec. Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), 4(2).
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
Okut, H. (2021). Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory. www.intechopen.com
Orca, O. O., & Setiawan, T. (n.d.). Apakah Return Bagi Investor Saham Akan Terdampak Akibat Pengumuman Pandemik Covid 19 Di Maret 2020? https://doi.org/10.30813/digismantech.v1i2.3256
Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17. https://doi.org/10.25077/teknosi.v7i1.2021.8-17
Putro, E. A. N., Rimawati, E., & Vulandari, R. T. (2021). Prediksi Penjualan Kertas Menggunakan Metode Double Exponential Smoothing. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 9(1), 60. https://doi.org/10.30646/Tikomsin.V9i1.548
Riza, F., & Sudibyo, W. (N.D.). Faktor-Faktor Yang Mempengaruhi Tingkat Stock Returns Pada Perusahaan Subsektor Otomotif Dan Komponen Yang Terdaftar Di Bursa Efek Indonesia Periode 2015-2018. In Journal of Business and Applied Management (Vol. 13, Issue 1). http://journal.ubm.ac.id/
Rosyd, A., Irma Purnamasari, A., & Ali, I. (2024). Penerapan Metode Long Short Term Memory (Lstm) Dalam Memprediksi Harga Saham Pt Bank Central Asia. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 1).
Rustiana, D., Ramadhani, S., & Batubara, M. (n.d.). Strategi di Pasar Modal Syariah.
Tanto, V. M., & Kurniawan, T. A. (2022). Pengembangan Sistem Rekomendasi Investasi Saham berbasis Web (Studi Kasus: Reliance Sekuritas Malang) (Vol. 6, Issue 6). http://j-ptiik.ub.ac.id
Toranggi Berton, F., Aasya Aldin Islamy, M., Ramadhan Fitra, R., Gede
Angga Dinata, I., & Yudistira, N. (n.d.). Prediksi Harga Saham Indosat Menggunakan Algoritma LSTM.
Veny, V., & Gunawan, Y. (2022). Perubahan Harga Saham Dilihat Dari Faktor Fundamental Perusahaan Makanan Dan Minuman. Jurnal Akuntansi Bisnis, 15(1). https://doi.org/10.30813/jab.v15i1.2874
Verkino, B., Sinaga, B. M., & Andati, T. (2020). Portofolio Optimal Investasi Saham dari 6 Sektor pada Indeks LQ45 Periode 2015-2018. Jurnal Aplikasi Bisnis Dan Manajemen. https://doi.org/10.17358/jabm.6.2.389
Wiranda, L., & Sadikin, M. (n.d.). Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma (Vol. 8).
DOI: https://doi.org/10.31294/inf.v11i2.22156
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ken William, Dionisia Bhisetya Rarasati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License