Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar

Abdussalam Al Masykur, Siska Kurnia Gusti, Suwanto Sanjaya, Febi Yanto, Fadhilah Syafria

Abstract


Di Perkebunan Sei Lukut, Desa Maredan Barat, Kecamatan Tualang, Kabupaten Siak, Provinsi Riau, PT. Surya Intisari Raya, sebuah perusahaan swasta, mengelola perkebunan kelapa sawit. Memiliki 4 bagian lahan kelapa sawit yang terdiri dari 216 blok dengan total sekitar 4.000 Ha. Blok kelapa sawit biasanya mencakup 20 hektar dan berisi 28.000 pohon kelapa sawit, dengan kapasitas produksi bulanan sebesar 57 ton. Pemetaan klaster produksi tandan buah segar berupaya membantu pelaku usaha memutuskan kebijakan apa yang akan diterapkan untuk meningkatkan akurasi dan produktivitas produksi minyak sawit. Metode K-Means merupakan komponen dari metode clustering, yang merupakan subset dari kelompok Unsupervised Learning dan digunakan untuk mempartisi data ke dalam berbagai kategori. Untuk mengelompokkan blok lahan berdasarkan delapan data variabel luas pokok, panjang panen, daun lepas, curah hujan, pupuk, tujuan, dan persentase keberhasilan, penelitian ini akan menerapkan Indeks Davies Bouldin dengan alat RapidMiner. Kesimpulan akhir dari penelitian ini adalah sebuah aplikasi yang dapat memetakan pengelompokan areal produksi tandan buah segar dengan menerapkan metode K-Means Clustering, dengan nilai Davies Bouldin Index terkecil sebesar 0,921 pada jumlah cluster 3 yang termasuk Cluster C1 (Produktivitas Sedang). Terdiri dari 96 blok tanah, Cluster C2 (Produktivitas Rendah) terdiri dari 41 blok tanah, dan Cluster C3 (Produktivitas Tinggi) terdiri dari 79 blok tanah.

In Sei Lukut Estate, West Maredan Village, Tualang District, Siak District, Riau Province, PT. Surya Intisari Raya, a private business, administers oil palm plantations. It has 4 sections of oil palm land made up of 216 blocks totaling about 4,000 Ha. Blocks of oil palm typically cover 20 hectares and contain 28,000 palm trees, with a monthly output capacity of 57 tons. The mapping of the production clusters for fresh fruit bunches seeks to help the business decide what policies to implement to increase the accuracy and productivity of palm oil production. The K-Means method is a component of the clustering method, which is a subset of the Unsupervised Learning group and is used to partition data into various categories. In order to group land blocks based on the eight variable data areas of total principal, harvest length, loose leaf, rainfall, fertilizer, goal, and percentage of success, this study will apply the Davies Bouldin Index with RapidMiner tools. The final conclusion of this research is an application that can map the grouping of fresh fruit bunch production areas by applying the K-Means Clustering method, with the smallest Davies Bouldin Index value of 0.921 in the number of clusters 3 including Cluster C1 (Medium Productivity) consisting of 96 blocks land, Cluster C2 (Low Productivity) consists of 41 land blocks, and Cluster C3 (High Productivity) consists of 79 land blocks.


Keywords


K-Means Clustering; Lahan Produksi Tandan Buah Segar; Pengelompokan; Pemetaan; Sawit

References


Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. 01, 17–24.

Bates, A., & Kalita, J. (2016). Counting Clusters in Twitter Posts. https://doi.org/10.1145/2905055.2905295

Erlangga, N., Solikhun, S., & Irawan, I. (2019). Penerapan Data Mining Dalam Mengelompokan Produksi Jagung Menurut Provinsi Menggunakan Algoritma K-Means. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 702–709. https://doi.org/10.30865/komik.v3i1.1681

Febrita, R. E., & Amaniyah, M. (2022). Penentuan Kekerabatan Hewan Berdasarkan Struktur Protein IGF2 Menggunakan Metode K-Means dan N-Gram. Jurnal Informatika, 9(2), 140–147. https://doi.org/10.31294/inf.v9i2.13808

Hendra Effendi, Ahmad Syahrial, Sefran Prayoga, W. D. H. (2021). Penerapan Metode K-Means Clustering untuk Pengelompokan Lahan Sawit Produktif pada PT Kasih Agro Mandiri. Teknomatika, 11(02), 117–126.

Iin Parlina, Agus Perdana Windarto, Anjar Wanto, M. R. L. (2018). Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center. Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center Untuk Clustering Program Sdp, 3(1), 87–93.

Ismai. (2017). Perkebunan Kelapa Sawit Indonesia Dalam Perspektif Pembangunan Berkelanjutan. Jurnal Ilmu-Ilmu Sosial Indonesia, 43(1), 81–94. http://jmi.ipsk.lipi.go.id/index.php/jmiipsk/article/view/717/521

Maulida, L. (2018). Penerapan Datamining Dalam Mengelompokkan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. Dki Jakarta Dengan K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 167. https://doi.org/10.14421/jiska.2018.23-06

Muningsih, E., Maryani, I., & Handayani, V. R. (2021). Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa. Jurnal Sains Dan Manajemen, 9(1), 95–100. www.bps.go.id

Pasaribu, D. F., Damanik, I. S., Irawan, E., Suhada, & Tambunan, H. S. (2021). Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 2(1), 11–20. https://doi.org/10.37148/bios.v2i1.17

Pulungan, I. M., Saifullah, S., Fauzan, M., & Windarto, A. P. (2019). Implementasi Algoritma K-Means Clustering dalam Menentukan Blok Tanaman Sawit Paling Produktif. Prosiding Seminar Nasional Riset Information Science (SENARIS), 1(September), 338. https://doi.org/10.30645/senaris.v1i0.39

Tukiyat, T., & Djohan, Y. (2022). Analisis Penyebaran Pandemi Covid-19 Di Kota Jakarta Menggunakan Metode Clustering K-Means Dan Density Based Spatial Clustering of Application With Noise (Dbscan). Jurnal Informatika, 9(1), 43–54. https://doi.org/10.31294/inf.v9i1.11226

Yuli Mardi. (2019). Data Mining : Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatika. Jurnal Edik Informatika, 2(2), 213–219.




DOI: https://doi.org/10.31294/inf.v10i1.15621

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Index by:

 
Published by Department of Research and Public Service (LPPM) Universitas Bina Sarana Informatika with supported Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License