Prediksi Kinerja Siswa Pada E-Learning Moodle Platform Menggunakan Algoritma Adaptive Boosting
Abstract
Pandemi Covid-19 yang sudah berlangsung sejak awal tahun 2020 memberikan dampak besar di berbagai sektor, salah satunya di sektor pendidikan, dimana awalnya pendidikan dilakukan secara tatap muka, karena pandemi mengharuskan proses belajar mengajar dilakukan secara dalam jaringan (daring) Teknologi informasi berkembang sangat pesat dan mempengaruhi berbagai bidang, salah satunya bidang pendidikan, yang dimana pembelajaran secara daring sudah menjadi hal yang biasa untuk era saat sekarang ini, salah satu Learning Management System atau yang sering disingkat LMS yang sering digunakan adalah E-Learning menggunakan platform moodle, ditambah untuk saat pandemic covid-19 proses pembelajaran diarahkan ke sistem daring, sehingga penggunaan E-Learning menjadi meningkat. Melihat hal tersebut penulis bermaksud untuk melakukan penelitian untuk melakukan prediksi terhadap kinerja siswa dalam mengikuti perkuliahan e-learning yang menggunakan moodle platform, penelitian ini melihat dari sisi log activity siswa di moodle platform lalu log tersebut di transformasi agar dapat dilakukan proses klasifikasi oleh algoritma machine learning. Pada penelitian ini penulis melakukan klasifikasi menggunakan algoritma Adaptive Boosting dengan Base Learner C4.5 dengan teknik pra pemrosesan data Resample untuk Imbalance data. Hasil dari penelitian ini didapatkan hasil performansi yang baik, dengan nilai Akurasi 95%, ROC 0.97, dan Kappa 0.90. sehingga penelitian ini dapat menjadi model untuk memprediksi kinerja siswa dengan melihat log aktivitasnya menggunakan platform moodle.
The Covid-19 pandemic, which has been going on since the beginning of 2020, has had a major impact in various sectors, one of which is in the education sector, where initially education was carried out face-to-face, because the pandemic requires the teaching and learning process to be carried out online Information technology is developing very rapidly and affecting various fields, one of which is the field of education, where online learning has become commonplace for today's era, one of the Learning Management Systems or often abbreviated as LMS that is often used is E-Learning using the moodle platform, plus during the Covid-19 pandemic the learning process is directed to an online system, so that the use of E-Learning becomes increasing. Seeing this, the author intends to conduct research to predict student performance in participating in e-learning lectures using the moodle platform, this study looks at the student activity log on the moodle platform and then the log is transformed so that the classification process can be carried out by machine learning algorithms. In this study, the authors classified using the Adaptive Boosting algorithm with Base Learner C4.5 with the Resample data preprocessing technique for data imbalance. The results of this study obtained good performance results, with an Accuracy value of 95%, ROC 0.97, and Kappa 0.90. So this study can be a model to predict student performance by looking at their activity logs using the Moodle platform.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Alberth, Y., & Soepranoto, A. H. H. (2022). Pendekatan Resampling Data Untuk Menangani Masalah Ketidakseimbangan Kelas. Jurnal Komputer Dan Informatika, 10(1), 31–38. https://doi.org/10.35508/JICON.V10I1.6554
Aleksandrova, Y. (2019). Predicting Students Performance In Moodle Platforms Using Machine Learning Algorithms.pdf. 1, 177–187. https://ideas.repec.org/a/vrn/katinf/y2019i1p177-187.html
Annisa, R.-, & Sasongko, A.-. (2020). PREDIKSI NILAI AKADEMIK MAHASISWA MENGGUNAKAN ALGORITMA NAÃVE BAYES. JST (Jurnal Sains Dan Teknologi), 9(1), 1–10. https://doi.org/10.23887/jst-undiksha.v9i1.19488
Bahad, P., & Saxena, P. (2020). Study of AdaBoost and Gradient Boosting Algorithms for Predictive Analytics. 235–244. https://doi.org/10.1007/978-981-15-0633-8_22
Chango, W., Cerezo, R., & Romero, C. (2019). Predicting academic performance of university students from multi-sources data in blended learning. ACM International Conference Proceeding Series. https://doi.org/10.1145/3368691.3368694
He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105–117.
https://doi.org/10.1016/j.eswa.2018.01.012
Holiver, N., Kurbatova, T., & Bondar, I. (2020). Blended learning for sustainable education: Moodle-based English for Specific Purposes teaching at Kryvyi Rih National University. E3S Web of Conferences, 166, 10006. https://doi.org/10.1051/E3SCONF/202016610006
Ina, W. T., Manu, S., Odja, M., Mauboy, E., Rantelobo, K., Maggang, A., & Pella, S. (2019). KLASIFIKASI TINGKAT KELULUSAN MAHASISWA PRODI TEKNIK ELEKTRO FST UNDANA MENGGUNAKAN ALGORITMA C4.5. SEMINAR NASIONAL SAINS DAN TEKNIK FST UNDANA (SAINSTEK-IV), 355–361. https://conference.undana.ac.id/sainstek/article/view/64
Irfan, M., Kusumaningrum, B., Yulia, Y., & Widodo, S. A. (2020). CHALLENGES DURING THE PANDEMIC: USE OF E-LEARNING IN MATHEMATICS LEARNING IN HIGHER EDUCATION. Infinity Journal, 9(2), 147–158. https://doi.org/10.22460/INFINITY.V9I2.P147-158
Kurniawan, Y. I. (2018). Rancang Bangun Sistem Informasi Surat Menyurat Berbasis SAAS (Software As A Service). Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), x(No. 30/E/KPT/2018), 1–8. https://doi.org/10.25126/jtiik
Laila Qadrini, O., Seppewali, A., Aina, A., Studi Statistika, P., Matematika dan Ilmu Pengetahuan Alam, F., & Sulawesi Barat, U. (2021). Decision Tree dan Adaboost pada Klasifikasi Penerima Program Bantuan Sosial. Jurnal Inovasi Penelitian, 2(7), 1959–1966. https://doi.org/10.47492/JIP.V2I7.1046
Lin, C., Tsai, C. F., & Lin, W. C. (2022). Towards hybrid over- and under-sampling combination methods for class imbalanced datasets: an experimental study. Artificial Intelligence Review, 56(2), 845–863. https://doi.org/10.1007/S10462-022-10186-5/METRICS
Masangu, L., Jadhav, A., & Ajoodha, R. (2021). Predicting student academic performance using data mining techniques. Advances in Science, Technology and Engineering Systems, 6(1). https://doi.org/10.25046/aj060117
Nespereira, C. G., Elhariri, E., El-Bendary, N., Vilas, A. F., & Redondo, R. P. D. (2016). Machine Learning Based Classification Approach for Predicting Students Performance in Blended Learning. Advances in Intelligent Systems and Computing, 407, 287–296. https://doi.org/10.1007/978-3-319-26690-9
Pebrianti, L., Aulia, F., Nisa, H., & S, K. S. (2022). Implementasi Metode Adaboost untuk Mengoptimasi Klasifikasi Penyakit Diabetes dengan Algoritma Naive Bayes. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 7(2), 122–127. https://doi.org/10.32528/JUSTINDO.V7I2.8627
Putri, D. A., Hananto, B., Afrizal, S., & Pangaribuan, A. B. (2020). PREDIKSI PROGRAM STUDI BERDASARKAN NILAI SISWA DENGAN ALGORITMA BACKPROPAGATION (STUDI KASUS SMAN 6 DEPOK JURUSAN IPS). Informatik : Jurnal Ilmu Komputer, 15(2). https://doi.org/10.52958/iftk.v15i2.1420
Raihan, M. R., Chrisnanto, Y. H., & Ningsih, A. K. (2022). Klasifikasi Penentuan Kelayakan Pinjaman Koperasi Dengan Algoritma Cart Menggunakan Algoritma Adaboost. INFOTECH Journal, 8(2), 74–83. https://doi.org/https://doi.org/10.31949/infotech.v8i2.3247
Shedriko, S., & Firdaus, M. (2022). PENENTUAN KLASIFIKASI DENGAN CRISP-DM DALAM MEMPREDIKSI KELULUSAN MAHASISWA PADA SUATU MATA KULIAH. Semnas Ristek (Seminar Nasional Riset Dan Inovasi Teknologi), 6(1).
https://doi.org/10.30998/semnasristek.v6i1.5814
Sudaryanto, S. N., & Sudaryanto, dan. (2022). Sintesis Fitur Density Based Feature Selection (DBFS) dan AdaBoost dengan XGBoost Untuk Meningkatkan Performa Model Prediksi. Prosiding Seminar Sains Nasional Dan Teknologi, 12(1), 305–313. https://doi.org/10.36499/PSNST.V12I1.6997
DOI: https://doi.org/10.31294/inf.v10i1.15525
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jordy Lasmana Putra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License