Wuwanjie Septian, Dwiza Riana, Maulana Jodi Prayogo



Skin cancer is malfunctional skin cell which have an uncontrolled growth factor and in the final phase of skin cancer, can make the person who suffer die.  Detect the disease as early as possible is one way to avoid the worst possible defects and, because of its location on the surface of the skin, it would be easy for anyone to identify the skin cancer (melanoma). Early detection can be performed based on the characteristics Asymmetrical Shape, Border, Color, Diameter, Evolution (ABCDE). In this research, The early detection is focused on identifying  diameter at 30 nevus images. Research method that used is processing the nevus images by converting the images into HSI images and then converted into a binary image, next step is do a segmentation using median filter, morphological construction process and at the final stage, do a edge detection with sobel operator. Edge detection process will simplify the nevus diameter area calculation. Result of the research with the 30 nevus images is the image processing method which suggested in this research can detect the nevus diameter and sucess to identify 26 images as normal nevus with diameter <6mm and 4 nevus images as melanoma with diameter >6mm.

Keyword: Nevus, Melanoma, Segmentation, Diameter Detection



Kanker kulit merupakan pertumbuhan sel kulit abnormal yang tidak dapat dikendalikan dan pada stadium lanjut dapat mengakibatkan kematian. Menemukan penyakit ini sedini mungkin merupakan salah satu cara untuk menghindari kecacatan maupun kemungkinan terburuk. Karena letaknya dipermukaan kulit, akan mudah bagi siapa saja untuk mengenali sendiri kanker kulit. Deteksi dini kanker kulit dalam bidang dermatologi, dapat dideteksi berdasarkan karakteristik Asymmetrical Shape, Border, Color, Diameter, Evolution (ABCDE). Dalam penelitian ini, deteksi dini difokuskan pada identifikasi diameter pada 30 citra nevus. Metode penelitian berupa pengolahan citra nevus dengan melakukan konversi citra menjadi citra HSI lalu diubah menjadi citra biner, selanjutnya dilakukan tahap segmentasi menggunakan filter median, proses rekonstruksi morfologi dan pada tahap akhir dilakukan deteksi tepi dengan menggunakan operator sobel. Proses deteksi tepi akan mempermudah menghitung nilai luas diameter nevus. Hasil penelitian deteksi dini kanker kulit terhadap 30 citra nevus, diperoleh hasil bahwa metode pengolahan citra yang diusulkan dapat mendeteksi diameter nevus dan berhasil mengidentifikasi citra tersebut sebagai 26 citra memiliki luas diameter nevus yang diidentifikasi sebagai tumor jinak dan 4 citra nevus yang memiliki diameter > 6 mm dan dinyatakan sebagai tumor melanoma.

Kata Kunci: Nevus, Melanoma, Segmentasi, Deteksi Diameter

Teks Lengkap:



Amaliah, B., Fatichah C., Widyanto, M. R. (2010). ABCD Features Extraction of Image Dermatoscopic Based on Morphology Analysis for Malanoma Skin Cancer Diagnosis. Journal Ilmu komputer dan Informasi 3 (2), pp 82-90.

Arrangoiz, R., Dorantes, J., Cordera F., Juarez, M.M, Paquentin, E.M., León, E. L. (2016). Melanoma Review: Epidemiology, Risk Factors, Diagnosis and Staging. Journal of Cancer Treatment and Research 2016; 4(1), pp. 1-15.

Cancer Facts and Figures (2016). American Cancer Society. diakses 22 Desember 2016.

Castro, E.A. & Donoho, D.L. (2009). Does Median Filtering Truly Preserve Edges Better Than Linear Filtering?. The Annals of Statistics Vol 37, no 3, pp. 1172-1206.

Fatichah, C., Amaliah, B., Widyanto, MR. (2010). Skin Lesion Detection using Fuzzy Region Growing and ABCD Feature Extraction for Melanoma Skin Cancer Diagnosis. Journal of Computing and Informatics Technology.

Geetha, P. & Selvi, V. (2015). An Impression of Cancers and Survey of Techniques in Image Processing for Detecting Various Cancers: A Review. International Research Journal of Engineering and Technology (IRJET) vol. 02 pp 236-242.

Gonzalez, R.C. (2008). Digital Image Processing 2nd. Pearson Prentice Hall, pp 178-179, pp 423-436, pp 711-712, pp 729-736.

Goyal, M. (2011). Morphological Image Processing. International Journal of Computer Science & Technology (IJCST) Vol. 2, Issue 4, Oct-Dec 2011, pp 161-165.

Grammatikopoulos, G., Hatzigaidas, A., Papastergiou A., Lazaridis, P., Zaharis, Z., Kampitaki, D., Tryfon, G. (2006). Automated Malignant Melanoma Detection Using MATLAB. Proceedings of the 5th WSEAS Int. Conf. on Data Networks, Communications & Computers 2006, pp. 91-94.

Ho, L.Y., Lee, H.K & Hai, Y.H. (2003). Spatial Color Descriptor for Image Retrieval and Video Segmentation. IEEE Transactions On Multimedia, Vol. 5 no 3 pp 358-367.

Karas, P. (2010). Efficient Computation of Morphological Greyscale Reconstruction. Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10), pp. 54–61.

Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J. (2013). PH² - A dermoscopic image database for research and benchmarking. 35th International Conference of the IEEE Engineering in Medicine and Biology Society, July 3-7.

Rigel, D.S, Friedman, R.J., Kopf, A.W., Polsky, D. (2005). ABCDE-An Evolving Concept in the Early Detection of Melanoma. American Medical Association.

Sood. H. & Shukla, M. (2014). Various Techniques for Detecting Skin Lesion: A Review. International Journal of Computer Science and Mobile Computing, Vol.3 Issue.5, pp. 905-912.

Tsai, S.H., Hsieh, Y.H. & Chen, C.S. (2013). A Novel Clustering Approach for the Segmentation of Pathological Cells Image. International Conference on Advanced Robotics and Intelligent Systems.



  • Saat ini tidak ada refbacks.

Index by:

 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika dengan dukungan Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License