Klasifikasi Data Tidak Lengkap Dengan Pendekatan Fuzzy Grid Partition
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Agarwal, S. (2014). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45
Borgi, A. (2018). Attributes regrouping in Fuzzy Rule-Based Classification Systems : an intra-classes approach. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1–7.
Chen, T., Shen, Q., Su, P., & Shang, C. (2016). Fuzzy rule weight modification with particle swarm optimization. Soft Computing, 20(8), 2923–2937. https://doi.org/10.1007/s00500-015-1922-z
Dahal, K., Almejalli, K., Hossain, M. A., & Chen, W. (2015). GA-based learning for rule identification in fuzzy neural networks. Applied Soft Computing Journal, 35, 605–617. https://doi.org/10.1016/j.asoc.2015.06.046
Elkano, M., Galar, M., Sanz, J., & Bustince, H. (2016). Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method. Information Sciences, 332, 94–114. https://doi.org/10.1016/j.ins.2015.11.006
Field, D., & Zhao, L. (2018). Feature Selection Method based onGridPartition + IEEE. 52–57.
Hartono. (2016). Optimization of Tsukamoto Fuzzy Inference System using Fuzzy Grid Partition. IJCSN International Journal of Computer Science and Network, 5(5), 2277–5420. Retrieved from www.IJCSN.org
Liu, X., Feng, X., & Pedrycz, W. (2013). Extraction of fuzzy rules from fuzzy decision trees: An axiomatic fuzzy sets (AFS) approach. Data and Knowledge Engineering, 84, 1–25. https://doi.org/10.1016/j.datak.2012.12.001
Mao, L., Chen, Q., & Sun, J. (2020). Construction and Optimization of Fuzzy Rule-Based Classifier with a Swarm Intelligent Algorithm. 2020. https://doi.org/10.1155/2020/9319364
Marbun, M., Ramdhan, W., Priyanto, D., & Zarlis, M. (2019). Philosophy of Fuzzy Logic as Fundamental of Decision Making Based On Rule Philosophy of Fuzzy Logic as Fundamental of Decision Making Based On Rule. https://doi.org/10.1088/1742-6596/1230/1/012021
Sadiq, A. T., Duaimi, M. G., & Shaker, S. A. (2012). Data missing solution using rough set theory and swarm intelligence. Proceedings - 2012 International Conference on Advanced Computer Science Applications and Technologies, ACSAT 2012, 3, 173–180. https://doi.org/10.1109/ACSAT.2012.29
Sadouki, L., & Haddad, B. (2016). Adaptive Neuro-Fuzzy Inference System for Echoes Classification in Radar Images. 4(Visigrapp), 159–166. https://doi.org/10.5220/0005717401590166
Sitompul, opim salim; Nababan, Erna Budhiarti; Alim, Z. (2017). Adaptive Distributed Grid- Partition in Generating Fuzzy Rules. 119–124.
Takahashi, Y., Nojima, Y., & Ishibuchi, H. (2015). Rotation effects of objective functions in parallel distributed multiobjective fuzzy genetics-based machine learning. 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015, (C), 1–6. https://doi.org/10.1109/ASCC.2015.7244890
DOI: https://doi.org/10.31294/ji.v8i2.10703
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Murni Marbun, Erwin Panggabean, Ricky Martin Ginting, Robertus Rinaldi Pakpahan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Index by:
Published LPPM Universitas Bina Sarana Informatika with supported by Relawan Jurnal Indonesia
Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Jakarta Pusat, DKI Jakarta 10450, Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License