Klasifikasi Data Tidak Lengkap Dengan Pendekatan Fuzzy Grid Partition

Murni Marbun, Erwin Panggabean, Ricky Martin Ginting, Robertus Rinaldi Pakpahan

Sari


Klasifikasi data tidak lengkap dapat di proses langsung dengan cara tertentu untuk mendapatkan aturannya atau diperoleh dari pengetahuan para pakar. Ketergantungan terhadap pakar akan sulit memodelkan implikasi logis manusianya, tidak tersedianya framework proses pemodelan, dan biaya pakar yang mahal. Kesulitan tersebut dapat diatasi dengan mendapatkan aturan dari data yang bersifat uncertain dengan menerapkan metode dari sistem fuzzy yang dibangun berdasarkan konsep fuzzy if-then rules. Pendekatan metode pada penelitian ini adalah metode fuzzy grid partition untuk mengklasifikasikan data tidak lengkap. Data yang digunakan adalah data cuaca yang terdiri data kelembaban udara sebagai konklusi, data temperatur, curah hujan, lamanya penyinaran matahari dan kecepatan angin sebagai anteseden. Tahapan penelitian dimulai dengan menginput data set tidak lengkap, merubah data tidak lengkap menjadi data lengkap, menormalisasi data, membangkitkan aturan dan melakukan proses klasifikasi data. Hasil penelitian menghasilkan 22 aturan untuk mengklasifikasi data dengan tingkat akurasi 66,67%, tingkat error 33,33% dan jumlah data unclass adalah 0

Kata Kunci


Kecerdasan Buatan

Teks Lengkap:

PDF

Referensi


Agarwal, S. (2014). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45

Borgi, A. (2018). Attributes regrouping in Fuzzy Rule-Based Classification Systems : an intra-classes approach. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1–7.

Chen, T., Shen, Q., Su, P., & Shang, C. (2016). Fuzzy rule weight modification with particle swarm optimization. Soft Computing, 20(8), 2923–2937. https://doi.org/10.1007/s00500-015-1922-z

Dahal, K., Almejalli, K., Hossain, M. A., & Chen, W. (2015). GA-based learning for rule identification in fuzzy neural networks. Applied Soft Computing Journal, 35, 605–617. https://doi.org/10.1016/j.asoc.2015.06.046

Elkano, M., Galar, M., Sanz, J., & Bustince, H. (2016). Fuzzy Rule-Based Classification Systems for multi-class problems using binary decomposition strategies: On the influence of n-dimensional overlap functions in the Fuzzy Reasoning Method. Information Sciences, 332, 94–114. https://doi.org/10.1016/j.ins.2015.11.006

Field, D., & Zhao, L. (2018). Feature Selection Method based onGridPartition + IEEE. 52–57.

Hartono. (2016). Optimization of Tsukamoto Fuzzy Inference System using Fuzzy Grid Partition. IJCSN International Journal of Computer Science and Network, 5(5), 2277–5420. Retrieved from www.IJCSN.org

Liu, X., Feng, X., & Pedrycz, W. (2013). Extraction of fuzzy rules from fuzzy decision trees: An axiomatic fuzzy sets (AFS) approach. Data and Knowledge Engineering, 84, 1–25. https://doi.org/10.1016/j.datak.2012.12.001

Mao, L., Chen, Q., & Sun, J. (2020). Construction and Optimization of Fuzzy Rule-Based Classifier with a Swarm Intelligent Algorithm. 2020. https://doi.org/10.1155/2020/9319364

Marbun, M., Ramdhan, W., Priyanto, D., & Zarlis, M. (2019). Philosophy of Fuzzy Logic as Fundamental of Decision Making Based On Rule Philosophy of Fuzzy Logic as Fundamental of Decision Making Based On Rule. https://doi.org/10.1088/1742-6596/1230/1/012021

Sadiq, A. T., Duaimi, M. G., & Shaker, S. A. (2012). Data missing solution using rough set theory and swarm intelligence. Proceedings - 2012 International Conference on Advanced Computer Science Applications and Technologies, ACSAT 2012, 3, 173–180. https://doi.org/10.1109/ACSAT.2012.29

Sadouki, L., & Haddad, B. (2016). Adaptive Neuro-Fuzzy Inference System for Echoes Classification in Radar Images. 4(Visigrapp), 159–166. https://doi.org/10.5220/0005717401590166

Sitompul, opim salim; Nababan, Erna Budhiarti; Alim, Z. (2017). Adaptive Distributed Grid- Partition in Generating Fuzzy Rules. 119–124.

Takahashi, Y., Nojima, Y., & Ishibuchi, H. (2015). Rotation effects of objective functions in parallel distributed multiobjective fuzzy genetics-based machine learning. 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015, (C), 1–6. https://doi.org/10.1109/ASCC.2015.7244890




DOI: https://doi.org/10.31294/ji.v8i2.10703

Refbacks

  • Saat ini tidak ada refbacks.


##submission.license.cc.by-sa4.footer##

Index by:

  
 
   
  worldcat    
 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika dengan dukungan Relawan Jurnal Indonesia

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License