Analisis Sentimen Aplikasi Gojek Menggunakan SVM, Random Forest dan Decision Tree

Ghanim Kanugrahan, Vito Hafizh Cahaya Putra, Yudi Ramdhani

Sari


Semakin banyak orang di dunia menggunakan aplikasi seluler di smartphone yang mereka miliki lebih dari sekadar alat hiburan, tetapi juga untuk memenuhi kebutuhan sehari-hari. Hal ini telah menyebabkan munculnya aplikasi seperti Gojek, sebuah perusahaan Super-app yang menyediakan solusi transportasi dan keperluan lainnya. Namun, Gojek menghadapi persaingan dari aplikasi serupa. Dengan kompetisi yang intens, memastikan kepuasan pengguna sangat penting untuk kesuksesan aplikasi Gojek. Review di platform seperti Google Play Store memberikan data berharga bagi pengembang untuk meningkatkan kualitas aplikasi dan pengalaman pengguna melalui pembaruan yang berkelanjutan. Makalah ini menganalisis kepuasan pelanggan aplikasi Gojek menggunakan pembelajaran mesin pada review pengguna dari Google Play Store yang diperoleh dari repositori data Kaggle. Dari 224.044 review awal, dataset dikurangi menjadi 65.584 review. Analisis mengungkapkan sentimen yang bervariasi, dengan kepuasan tinggi pada review bintang 5 dan keluhan umum tentang layanan yang lambat pada penilaian yang lebih rendah. Sembilan variasi model pembelajaran mesin, termasuk SVM, Random Forest, dan Decision Tree, digunakan untuk mengevaluasi data yang diterima. Algoritma SVM diidentifikasi sebagai yang paling efektif untuk klasifikasi sentimen. Hasil ini menunjukkan bahwa algoritma SVM adalah algoritma terbaik untuk digunakan dalam menganalisis review Gojek.

Teks Lengkap:

PDF

Referensi


A’la, F. Y. (2022). Indonesian Sentiment Analysis towards MyPertamina Application Reviews by Utilizing Machine Learning Algorithms. Journal of Informatics Information System Software Engineering and Applications (INISTA), 5(1), 80–91. https://doi.org/10.20895/inista.v5i1.838

Das, R., & Singh, T. D. (2023). Multimodal sentiment analysis: a survey of methods, trends, and challenges. ACM Computing Surveys, 55(13s), 1–38.

Hermanto, Kuntoro, A. Y., Asra, T., Pratama, E. B., Effendi, L., & Ocanitra, R. (2020). Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique. Journal of Physics: Conference Series, 1641(1). https://doi.org/10.1088/1742-6596/1641/1/012102

Li, X., Zhang, B., Zhang, Z., & Stefanidis, K. (2020). A sentiment-statistical approach for identifying problematic mobile app updates based on user reviews. Information (Switzerland), 11(3). https://doi.org/10.3390/info11030152

Molinillo, S., Navarro-García, A., Anaya-Sánchez, R., & Japutra, A. (2020). The impact of affective and cognitive app experiences on loyalty towards retailers. Journal of Retailing and Consumer Services, 54, 101948.

Nugroho, K. S., Sukmadewa, A. Y., Wuswilahaken DW, H., Bachtiar, F. A., & Yudistira, N. (2021). BERT fine-tuning for sentiment analysis on Indonesian mobile apps reviews. Proceedings of the 6th International Conference on Sustainable Information Engineering and Technology, 258–264.

Rahmatulloh, A., Shofa, R. N., Darmawan, I., & Ardiansah. (2021). Sentiment Analysis of Ojek Online User Satisfaction Based on the Naïve Bayes and Net Brand Reputation Method. 2021 9th International Conference on Information and Communication Technology, ICoICT 2021, 337–341. https://doi.org/10.1109/ICoICT52021.2021.9527466

Ranjan, S., & Mishra, S. (2020). Comparative sentiment analysis of app reviews. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–7.

Rizkya, A. T., Rianto, R., & Gufroni, A. I. (2023). Implementation of the Naive Bayes Classifier for Sentiment Analysis of Shopee E-Commerce Application Review Data on the Google Play Store. International Journal of Applied Information Systems and Informatics (JAISI), 1(1).

Santos-Vijande, M. L., Gómez-Rico, M., Molina-Collado, A., & Davison, R. M. (2022). Building user engagement to mhealth apps from a learning perspective: Relationships among functional, emotional and social drivers of user value. Journal of Retailing and Consumer Services, 66, 102956.

Setiawan, M. I., Nasihien, R. D., & Masirin, M. I. M. (2021). Development of emobility mobile APP based on geographic information systems: Integratiing public transportation, regional GDP, regional government budget revenues and expenditures (APBD) in Indonesia. International Journal of EBusiness and EGovernment Studies, 13(1), 220–238.

Styawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., & Cahyono, R. P. (2022). Sentiment analysis on online transportation reviews using Word2Vec text embedding model feature extraction and support vector machine (SVM) algorithm. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE), 163–167.

Switrayana, I. N., Ashadi, D., Hairani, H., & Aminuddin, A. (2023). Sentiment Analysis and Topic Modeling of Kitabisa Applications using Support Vector Machine (SVM) and Smote-Tomek Links Methods. International Journal of Engineering and Computer Science Applications (IJECSA), 2(2), 81–91.

Syahputra, H., Basyar, L. K., & Tamba, A. A. S. (2020). Setiment analysis of public opinion on the go-jek indonesia through twitter using algorithm support vector machine. Journal of Physics: Conference Series, 1462(1), 012063.

Trivedi, S. K., & Singh, A. (2021). Twitter sentiment analysis of app based online food delivery companies. Global Knowledge, Memory and Communication, 70(8/9), 891–910.

Wang, Y., Huang, G., Li, J., Li, H., Zhou, Y., & Jiang, H. (2021). Refined global word embeddings based on sentiment concept for sentiment analysis. Ieee Access, 9, 37075–37085.




DOI: https://doi.org/10.31294/infortech.v6i2.24594

DOI (PDF): https://doi.org/10.31294/infortech.v6i2.24594.g6678

Refbacks

  • Saat ini tidak ada refbacks.


Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License