Sistem Pakar Deteksi Dini Gejala Awal Diabetes Mellitus

Ibnu Alfarobi

Sari


Abstrak

Dalam bidang kesehatan peran teknologi sangat dibutuhkan dan sangat membantu, khususnya dengan adanya sistem pakar deteksi dini gejala awal diabetes mellitus yang mampu memberikan informasi kepada masyarakat umum ada tidaknya gejala awal diabetes mellitus di dalam tubuhnya. Metode yang digunakan dalam perancangan Sistem Pakar ini adalah Forward Chainning karena dilakukan penelusuran berdasarkan aturan alur maju mencari sebab atau ciri yang dikeluhkan oleh pengguna lalu menghasilkan kesimpulan hasil identifikasi jenis diabetes yang diderita. Hasil dari pengujian sistem pakar ini ditentukan oleh gejala-gejala penyakit diabetes yang timbul. Sebagai contoh, identifikasi pertama yaitu dengan menggunakan pertanyaan P003 (Poliuri), P002 (Polidipsi), dan P001 (Polifagi) yang merupakan gejala klasik diabetes. Dari pertanyaan P001 jawabannya akan dibuat menjadi 2 kondisi, jika jawab “Tidak” maka dilanjutkan ke pertanyaan P006, P016 sampai menemukan hasil identifikasi tipe diabetes G003 (Pra Diabetes). Jika jawab “Ya” maka dilanjutkan ke pertanyaan P015, P018, P021 dan seterusnya sampai menemukan hasil identifikasi tipe diabetes yang lainnya. Penentuan hasil penelitian identifikasi tipe diabetes yang lebih lengkap dapat dilihat di gambar 3 (decision tree) serta mengacu pada keterangan tabel 1 (rule tipe DM). Sistem pakar ini dirancang dengan menggunakan software Visual Basic 6 dan software databasenya menggunakan Microsoft Access 2013.

Kata kunci: sistem pakar, diabetes mellitus, forward chainning

 

Abstract

The role of a technology in the health sector is needed and very helpful, especially with the expert system for early detection early symptoms of diabetes mellitus which is able to provide information to the general public the existence of early symptoms in their body. The method used in the design of Expert System is Forward Chainning as do advanced searches based workflow rules characteristics to look for or complained of by the user and produce conclusion of the identification of the type of diabetes suffered. The results of the expert system testing are determined by the symptoms of diabetes that arise. For example, the first identification is by using questions P003 (Poliuri), P002 (Polidipsi), and P001 (Polifagi) which are classic symptoms of diabetes. From the question P001 the answer will be made into 2 conditions, if the answer is "No" then proceed to question P006, P016 until you find the results of identifying the type of diabetes G003 (Pre Diabetes). If you answer "Yes" then proceed to questions P015, P018, P021 and so on until you find the results of identifying other types of diabetes. Determination of the results of a more complete identification of diabetes types can be seen in Figure 3 (decision tree) and refers to the description of table 1 (DM type rule). An expert system is designed by using Visual Basic 6 software and database software using Microsoft Access 2013.

Keywords: expert system, diabetes mellitus, forward chainning


Teks Lengkap:

PDF

Referensi


Akram, M., Rahman, I, A., & Memon, I. (2014). A Review on Expert System and its Applications in Civil Engineering. International Journal of Civil Engineering and Built Environment, 24-29

Alkayyali, S., Lyssenko, V. (2014). Genetics of diabetes complications. Mamm Genome, 384–400

Banerjee, M., Vats, P. (2014). Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Indian J Hum Genet, 10–19

Bener, A., Darwish, S., Al-Hamaq, A,O., Yousafzai, M,T., & Nasralla, E, A. (2014). The potential impact of family history of metabolic syndrome and risk of type 2 diabetes mellitus: In a highly endogamous population. Indian J Endocrinol Metab, 202–209

Canivell, S., Gomis, R. (2014). Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev, 403–407

Dubey., Sonal., et al. (2014). Dealing with Uncertainty in Expert Systems. International Journal of Soft Computing and Engineering, 105-111

Hayadi, B. Herawan. (2018). Sistem Pakar. Yogyakarta: Deepublish

Hustinawaty & Aprianggi, Randy. (2014). The Development of Web Based Expert System for Diagnosing Children Disease Using PHP and MySQL. International Journal of Computer Trends and Technology (IJCTT), 197-202

Marewa, Lukman Waris. (2015). Kencing Manis (Diabetes Mellitus) di Sulawesi Selatan. Jakarta: Yayasan Pustaka Obor Indonesia

Muslim., Much, A., et al. (2015). Expert System Diagnosis Chronic Kidney Disease Based on Mamdani Fuzzy Inference System. Journal of Theoritical and Applied Information Technology, 70-75

Rukun, Kasman dan Hayadi, B. Herawan (2018). Sistem Informasi Berbasis Expert System. Yogyakarta: Deepublish

Saputri, M, P, N., Isnanto, R, R., & Windasari, I, P. (2017). Aplikasi Sistem Pakar Pendeteksi Gastroenteritis Berbasis Android. Jurnal Teknologi dan Sistem Komputer, 110-114

Setiabudi, W, U., Sugiharti, E., & Arini, F, Y. (2017). Expert System Diagnosis Dental Disease Using Certainty Factor Method. Scientific Journal of Informatics, 43-50




DOI: https://doi.org/10.31294/ijcit.v4i1.5307

##submission.copyrightStatement##

##submission.license.cc.by-sa4.footer##

P-ISSN: 2527-449X E-ISSN: 2549-7421
Statistik Pengunjung Jurnal IJCIT
 

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License