Optimalisasi Algoritma Random Forest Menggunakan SMOTE untuk Prediksi Pembatalan Tamu Hotel

Candra Agustina, Eka Rahmawati

Abstract


The role of technology has simplified user access to various services, including hotel reservations. Technology has also made it easier for service providers to offer their products by showcasing hotel photos and specifications. However, the ease of making reservations aligns with the ease for users to cancel their hotel room bookings, which undoubtedly has a negative impact on hotel owners. To minimize losses, cancellation penalties and predictions regarding the likelihood of reservation cancellations can be implemented. Therefore, predicting hotel reservation cancellations has become crucial for hotel managers to reduce occupancy declines. One of the tools for prediction can be done through machine learning technology. The researcher utilized a hotel reservation dataset consisting of 18 attributes, which underwent data processing using the Random Forest algorithm, where the label attribute was the decision to cancel or not. In this study, the Random Forest algorithm was used without optimization, yielding an accuracy of 87.85%. Subsequently, the dataset, before being processed using Random Forest, underwent handling for imbalanced data using SMOTE. Through this method, the accuracy was enhanced by 2.46%, resulting in a final accuracy of 90.31%. Since the classification was only divided into 2 groups, SMOTE was performed only once to obtain a balanced data sample. This research contributes significantly to understanding the use of machine learning algorithms, particularly Random Forest, in addressing the challenges of imbalanced data in the case of predicting hotel reservation cancellations. The research highlights the potential of SMOTE as an effective tool in handling data imbalance, which can assist hotel managers and hospitality service providers in optimizing reservation management and improving room occupancy rates.

Full Text:

PDF (40-51)

References


Antonio, N., Almeida, A. de, & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25–39. https://doi.org/10.18089/tms.2017.13203

Arisandi, R. (2023). Perbandingan Model Klasifikasi Random Forest Dengan Resampling Dan Tanpa Resampling Pada Pasien Penderita Gagal Jantung. Jurnal Gaussian, 12(1), 136–145. https://doi.org/10.14710/j.gauss.12.1.136-145

Azhar, Y., Mahesa, G. A., & Mustaqim, Moch. C. (2021). Prediction of hotel bookings cancellation using hyperparameter optimization on Random Forest algorithm. Jurnal Teknologi dan Sistem Komputer, 9(1), 15–21. https://doi.org/10.14710/jtsiskom.2020.13790

Berrar, D. (2018). Cross-validation. Dalam Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vol. 1–3, hlm. 542–545). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Colcol, S. (2023). Hotel Cancellation Policy: Complete Guide.

Hartanti, D., Pradana, A. I., & Lestari, S. (2023). Komprasi Algoritma Decision Tree, SVM dan ANN untuk Reservasi Hotel (Vol. 16).

Imanwardhani, C. S. (2018). Pendekatan Synthetic Minority Oversampling Technique Dalam Menangani Klasifikasi Imbalanced Data Biner.

Jafar, J., & Rahaningsih, N. (2023). MENENTUKAN POLA RESERVASI HOTEL DENGAN ALGORITMA FP-GROWTH. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 540–546. https://www.kaggle.com,.

Power, D. M. W. (2020). Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation.

Puh, K., & Bagić Babac, M. (2023). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078.

Roihan, A., Abas Sunarya, P., & Rafika, A. S. (2019). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82.

Santos-Pereira, J., Gruenwald, L., & Bernardino, J. (2022). Top data mining tools for the healthcare industry. Dalam Journal of King Saud University - Computer and Information Sciences (Vol. 34, Nomor 8, hlm. 4968–4982). King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2021.06.002

Selamet, I. W. A., & Sumadi, I. G. (2021). PERAN RESERVASI DALAM MENINGKATKAN PENJUALAN KAMAR DI TIJILI SEMINYAK HOTEL. Journey, 4(2), 321–340.

Suastini, N. M. (2018). ANALISIS MANAJEMEN RISIKO UNTUK MEMINIMALKAN DAMPAK FORCE MAJEURE DI THE RITZ-CARLTON, BALI. Jurnal Kepariwisataan, 17(3), 5–8.

Swana, E. F., Doorsamy, W., & Bokoro, P. (2022). Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset. Sensors, 22(9). https://doi.org/10.3390/s22093246

Syahfitri, D., Perdana Windarto, A., & Fauzan, M. (2020). Peningkatan Nilai Akurasi Prediksi Algortima Backpropogation (Kasus: Jumlah Pengunjung Tamu pada Hotel berbintang di Sumatera Utara). Dalam Journal of Information Sistem Research (Vol. 2, Nomor 1).

Tanimoto, A., Yamada, S., Takenouchi, T., Sugiyama, M., & Kashima, H. (2022). Improving imbalanced classification using near-miss instances. Expert Systems with Applications, 201. https://doi.org/10.1016/j.eswa.2022.117130.

Wardani, D. M. (20221). Hotel Reservation Policy Pada Masa Pandemi : Refund, Rescedule Atau Cancel Di Labuan Bajo. Pariwisata, 8(1), 63–72.




DOI: https://doi.org/10.31294/evolusi.v12i2.23149

ISSN: 2657-0793 (online). ISSN: 2338-8161 (print)

Published By LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License