Metode Simple Moving Average dan Weighted Moving Average Dalam Memprediksi Produksi Beras

Ida Darwati, Ratih Yulia Hayuningtyas

Abstract


Many areas in Indonesian, rice is used as one of the daily staple foods, so it is important to pay attention to the amount of rice production. In this study the authors predict rice production in East Java Province, because increase population so the staple food of rice needs to be considered for the future. In overcoming, a supporting factor is needed for rice production and a prediction is needed to determine the amount of rice production must be achieved in the future. The rice production data used in this study is from January 2020 to Desember 2022. Prediction the amount of rice production, authors use two methods, that Simple Moving Average and Weighted Moving Average and then look for the smallest RMSE value, using the python programming language. The result study Weighted Moving Average method is the right method compared to the Simple Moving Average method in predicting rice production in East Java Province.

Full Text:

PDF (34-41

References


Adhianto, M. I. P., Bachtiar, F. A., & Dewi, R. K. (2021). Perbandingan Double Exponential Smoothing dan Triple Exponential Smoothing untuk Peramalan Jumlah Produksi Padi di Kota Surakarta. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 5(3), 1212–1220.

Akbar, K., & Hayaty, M. (2020). Data Balancing untuk Mengatasi Imbalance Dataset pada Prediksi Produksi Padi. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 2(02), 1–14. https://doi.org/10.46772/intech.v2i02.283

Azahra, N., Alifia, S. C., Andyka, N. P., Wijayanto, S., & Fathoni, M. Y. (2022). Peramalan Jumlah Produksi Tebu Menggunakan Metode Time Series Model Moving Averages. JURIKOM (Jurnal Riset Komputer), 9(4), 840–845. https://doi.org/10.30865/jurikom.v9i4.4388

Aziz, A., Siregar, A. M., & Zonyfar, C. (2022). Penerapan Algoritma K-Means dan Fuzzy C-Means untuk Pengelompokan Kabupaten Kota Berdasarkan Produksi Padi di Provinsi Jawa Barat. Scientific Student Journal for Information, Technology and Science, III(1), 1–8. https://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/411

Badan Pusat Statistik Provinsi Jawa Timur. (2023). Produksi Beras Menurut Kabupaten/Kota, 2020-2022. https://jatim.bps.go.id

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Herlina, Yohansen, & Sihotang, F. P. (2020). Supply Chain Management Pabrik Roti ABC Dengan Metode Weighted Moving Average (WMA). JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 349–363. https://doi.org/10.35957/jatisi.v7i2.299

Lusia, R. A. (2023). Perbandingan Prediksi Produksi Timah Menggunakan Model Simple Moving Averages, Weighted Moving Averages Dan Data Aktual Di Provinsi Kepulauan Bangka Belitung. Fraction: Jurnal Teori Dan Terapan Matematika, 3(1), 29–35. https://doi.org/10.33019/fraction.v3i1.40

Marisa, F., Zahma, A., Muit Bau, A., Noviansa, E., Neno, A. S., & Lidya Maukar, A. (2021). Digitasi Produktivitas Panen Padi Berbasis K-Means Clustering. SMARTICS Journal, 7(1), 21–26.

Nurwahdania, S., & Sulistijanti, W. (2020). PREDIKSI PRODUKSI BERAS DI PROVINSI JAWA TIMUR MENGGUNAKAN MUSIMAN AUTOREGRESSIVE TERINTEGRASI MOVING AVERAGE DENGAN METODE EXOGENOUS INPUT ( SARIMAX ). Prosiding Seminar Edusainstech FMIPA UNIMUS 2020, 451–461.

Putra, H., & Ulfa Walmi, N. (2020). Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi, 06(02), 100–107. https://doi.org/10.25077/teknosi.v6i2.2020.100-107

Putra, R. N., Aziz, A., & Zaini, A. (2023). Implementasi Metode Simple Regresi Linear dan Single Exponential Smoothing untuk Memprediksi Produksi Padi Jawa Timur. RAINSTEK (Jurnal Terapan Sains & Teknologi), 5(2), 95–102.

Situmorang, W. R. A., & Jannah, M. (2021). Implementasi Jaringan Syaraf Tiruan Memprediksi Hasil Panen Padi Pada Desa Pagar Jati Dengan Metode Backpropagation. Jurnal Ilmu Komputer Dan Sistem Informasi, 3(3), 167–175. http://ejournal.sisfokomtek.org/index.php/jikom/article/view/108

Swari, M. H. P., Qusyairi, M., Mandyartha, E. P., & Wahanani, H. E. (2021). Business Intelligence System using Simple Moving Average Method (Case Study : Sales Medical Equipment at PT. Semangat Sejahtera Bersama). Journal of Physics: Conference Series, 1899(1), 1–6. https://doi.org/10.1088/1742-6596/1899/1/012121

Syafira, S., Hutahaean, J., & Santoso, S. (2022). Perbandingan Metode SMA dan MWA Dalam Memprediksi Jumlah Penjualan Alat Olahraga. Building of Informatics, Technology and Science (BITS), 3(4), 617–631. https://doi.org/10.47065/bits.v3i4.1409

Taqwa, N. L., Nuryana, I. K. D., & Andriani, A. (2019). SISTEM PREDIKSI PRODUKSI PADI DI PROVINSI JAWA TIMUR MENGGUNAKAN EXPONENTIAL SMOOTHING BERBASIS WEB. INOVATE, 04(01), 25–34. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Triyanto, E., Sismoro, H., & Laksito, A. D. (2019). IMPLEMENTASI ALGORITMA REGRESI LINEAR BERGANDA UNTUK MEMPREDIKSI PRODUKSI PADI DI KABUPATEN BANTUL. RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, 4(2), 73–86.

Wijaya, D. Y., Furqon, M. T., & Marji. (2022). Peramalan Jumlah Produksi Padi Menggunakan Metode Backpropagation. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(3), 1129–1137.

Zamahzari, A., & Puryantoro. (2023). Forecasting Produksi Padi dan Konsumsi Beras di Provinsi Jawa Timur. Jurnal Pertanian CEMARA (Cendekiawan Madura), 20(1), 27–38.




DOI: https://doi.org/10.31294/evolusi.v11i2.17267

ISSN: 2657-0793 (online). ISSN: 2338-8161 (print)

Published By LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License