Penerapan Metode Principle Component Analysis (PCA) untuk Clustering Data Kunjungan Wisatawan Mancanegara ke Indonesia

Elly Muningsih, Noor Hasan, Gunawan Budi Sulistyo

Abstract


The tourism sector is one of the country's biggest foreign exchange earners. Foreign tourist visits to Indonesia reached 16.1 million during 2019. Therefore foreign tourist visits become a very important thing. In this study clustering will be carried out or grouping data on foreign tourist visits into 5 groups for the category of countries with very high, high, high enough, low and very low visits. Data processing was performed using the K-Means clustering method and the Principle Component Analysis (PCA) dimension reduction method. From the data processing, K-Means modeling results combined with the PCA method resulted in a smaller or better Davies Bouldin Index (DBI) evaluation value of 0.310 compared to K-Means modeling alone which obtained a DBI value of 0.382. The tools used in data processing are RapidMiner. The results of clustering are expected to be a reference for related parties to maximize the promotion of overseas tourism.


Full Text:

PDF

References


Dash, P., Nayak, M., & Prasad Das, G. (2014). Principal Component Analysis using Singular Value Decomposition for Image Compression. International Journal of Computer Applications, 93(9), 21–27. https://doi.org/10.5120/16243-5795

Hapsari, V. J., & Nuryakin, C. (2019a). ANALISIS PROFIL WISATAWAN MANCANEGARA YANG KELUAR MELALUI PINTU SOEKARNO HATTA DAN NGURAH RAI. Jurnal Kepariwisataan Indonesia, 12(September), 17–30.

Hapsari, V. J., & Nuryakin, C. (2019b). MELALUI PINTU SOEKARNO HATTA DAN NGURAH RAI, 12(September), 17–30.

Luo, S., Chen, T., & Jian, L. (2018). Using principal component analysis and least squares support vector machine to predict the silicon content in blast furnace system. International Journal of Online Engineering, 14(4), 149–162. https://doi.org/10.3991/ijoe.v14i04.8397

Muningsih, E., & Kiswati, S. (2015). Penerapan Metode K-Means untuk Clustering Produk Online Shop dalam Penentuan Stok Barang. Jurnal Bianglala Informatika, 3(1), 10–17.

Muningsih, E., & Kiswati, S. (2018). Sistem Aplikasi Berbasis Optimasi Metode Elbow Untuk Penentuan Clustering Pelanggan. Joutica, 3(1), 117. https://doi.org/10.30736/jti.v3i1.196

Pariwisata, K., Industri, A., & Regulasi, D. (2019). IDENTIFIKASI POTENSI KUNJUNGAN WISATAWAN MANCANEGARA PADA POS LINTAS BATAS BUILALO DI PROVINSI NUSA TENGGARA TIMUR Identifying Potential Tourist Arrivals From Cross-Border Builalo Post’s In East Nusa Tenggara Province Addin Maulana, 13(2), 67–78.

Sastry, S. H., & Babu, P. M. S. P. (2013). Implementation of CRISP Methodology for ERP Systems, 2(05), 203–217.

Surtiningsih, L., Furqon, M. T., & Adinugroho, S. (2018). Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Support Vector Regression dengan Algoritma Genetika, 2(8), 2578–2586.




DOI: https://doi.org/10.31294/bi.v8i1.8470

DOI (PDF): https://doi.org/10.31294/bi.v8i1.8470.g4152

ISSN2338-9761 (media online), 2338-8145 (media cetak)

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License