PREDIKSI KELUHAN PELANGGAN PADA APARTEMEN MENGGUNAKAN ALGORITMAC4.5
Abstract
Customer complaint result in customer dissatisfaction and looses for businesses. Fierce competition in its property business apartment requires companies to reduce the number of complaints. Therefore, the classifications and predictions technique in data mining is needed to resolve the issue. Classification techniques used in data mining are decision tree. Decision tree is a technique which is widely use and produce output in the form of rules. The decision tree can present customer complaint pattern behavior. In this study, it uses the algorithm C4.5 to generate classification rules of customer complaints to the apartment and the accuracy result in this study was 75%.
Keywords: Customer Complaint, Classification, Prediction, Decision tree, C4.5 Algorithm
Full Text:
PDFReferences
Banerji, Geetali, Kanak Saxena.2012. An Efficient Classification Algorithm for Real Estate domain. India: International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2424-2430. ISSN: 2249-6645.
Bhambri, Vivek. 2012. Data Mining as A Tool to Predict Churn Behavior of Customers. India: International Journal of Computer & Organization Trends –Volume2Issue3
Gorunescu.2011. Data Mining Concepts, Models and Techniques. Romania: Springer-Verlag Berlin Heidelberg
Griffin, Jill. 2005. Customer Loyalty. Jakarta: Erlangga
Han, J & Kamber, M. 2006. Data Mining Concept and Techniques. India: New Age International Limited
Huang, Longjun, Minghe Huang, Bin Guo, Zhiming Zhang. 2007.A New Method for Constructing Decision Tree Based on Rough Set Theory. China:IEEE International Conference on Granular Computing
Jantan, Hamidah,AbdulRazak Hamdan and Zulaiha Ali Othman. 2010. Human Talent Prediction in HRM using C4.5 Classification Algorithm. Malaysia: International Journal on Computer Science and Engineering Vol. 02, No. 08, 2010, 2526-2534 ISSN : 0975-3397
Liao T, Warren. 2007. Recent Advances in Data Mining of Enterprise Data Algorithms and Applications. Lousiana: World Scientific
Minaei-Bidgoli, Behrouz, Elham Akhondzadeh. 2010. A New Approach of Using Association Rule Mining in Customer Complaint Management. Iran: IJCSI International Journal
Computer Science Issues, Vol. 7, Issue 5, September 2010 ISSN (Online): 1694-0814 Moore, Patricia. 2005. Menguasai CRM. Jakarta: Prestasi Pustaka Publisher
Ngai a, E.W.T., Li Xiu b, D.C.K. Chau. 2008. Application of data mining techniques in customer relationship management: A literature review and classification. China: Expert Systems with Applications. Elsevier Ltd. 36 (2009) 2592–2602
Rodpysh, Keyvan Vahidy , Amir Aghai and Meysam Majdi. 2012. Applying Data Mining in Customer Relationship Management. Iran. 2012. International Journal of Information Technology, Control and Automation (IJITCA) Vol.2, No.3, July 2012.
Rumantir.2011. Agung Podomoro Bangun 11.200 Unit Apartemen Menengah. http://properti.kompas.com/read/2011/01/25/15101436/Agung.Podomoro.Bangun.11.200.Unit.Apartemen.Menengah
Sameto, Hudero. 2004. Proses Pembuatan Marketing Plan. Jakarta: PT. Gramedia Pustaka Utama
Santoso, Budi. 2007. Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
Sartono, Bagus & Syafitri, Utami Dyah. 2010. Metode Pohon Gabungan: Solusi Pilihan Untuk Mengatasi Kelemahan Pohon Regresi dan Klasifikasi Tunggal. Forum Statistika dan Komputasi. ISSN: 0853-8115, 1-7
Schauffer,Steve&Tom Pinkerton, 2007, PT. Prestasi Pustakaraya, Jakarta
Simanungkalit, Panangian. 2010. Mengapa Memilih Apartemen.http://properti.kompas.com/read/2010/03/27/13184530/Mengapa.Memilih.Apartemen.
DOI: https://doi.org/10.31294/p.v16i2.773
Copyright (c) 2016 Eni Irfiani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.