PREDIKSI KELUHAN PELANGGAN PADA APARTEMEN MENGGUNAKAN ALGORITMAC4.5

Eni Irfiani

Abstract


Customer complaint result in customer dissatisfaction and looses for businesses.  Fierce competition in its property business apartment requires companies to reduce the number of complaints. Therefore, the classifications and predictions technique in data mining is needed to resolve the issue. Classification techniques used in data mining are decision tree.  Decision tree is a technique which is widely use and produce output in the form of rules. The decision tree can present customer complaint pattern behavior. In this study, it uses the algorithm C4.5 to generate classification rules of customer complaints to the apartment and the accuracy result in this study was 75%.

 

Keywords: Customer Complaint, Classification, Prediction, Decision tree, C4.5 Algorithm


Full Text:

PDF

References


Banerji, Geetali, Kanak Saxena.2012. An Efficient Classification Algorithm for Real Estate domain. India: International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.4, July-Aug. 2012 pp-2424-2430. ISSN: 2249-6645.

Bhambri, Vivek. 2012. Data Mining as A Tool to Predict Churn Behavior of Customers. India: International Journal of Computer & Organization Trends –Volume2Issue3

Gorunescu.2011. Data Mining Concepts, Models and Techniques. Romania: Springer-Verlag Berlin Heidelberg

Griffin, Jill. 2005. Customer Loyalty. Jakarta: Erlangga

Han, J & Kamber, M. 2006. Data Mining Concept and Techniques. India: New Age International Limited

Huang, Longjun, Minghe Huang, Bin Guo, Zhiming Zhang. 2007.A New Method for Constructing Decision Tree Based on Rough Set Theory. China:IEEE International Conference on Granular Computing

Jantan, Hamidah,AbdulRazak Hamdan and Zulaiha Ali Othman. 2010. Human Talent Prediction in HRM using C4.5 Classification Algorithm. Malaysia: International Journal on Computer Science and Engineering Vol. 02, No. 08, 2010, 2526-2534 ISSN : 0975-3397

Liao T, Warren. 2007. Recent Advances in Data Mining of Enterprise Data Algorithms and Applications. Lousiana: World Scientific

Minaei-Bidgoli, Behrouz, Elham Akhondzadeh. 2010. A New Approach of Using Association Rule Mining in Customer Complaint Management. Iran: IJCSI International Journal

Computer Science Issues, Vol. 7, Issue 5, September 2010 ISSN (Online): 1694-0814 Moore, Patricia. 2005. Menguasai CRM. Jakarta: Prestasi Pustaka Publisher

Ngai a, E.W.T., Li Xiu b, D.C.K. Chau. 2008. Application of data mining techniques in customer relationship management: A literature review and classification. China: Expert Systems with Applications. Elsevier Ltd. 36 (2009) 2592–2602

Rodpysh, Keyvan Vahidy , Amir Aghai and Meysam Majdi. 2012. Applying Data Mining in Customer Relationship Management. Iran. 2012. International Journal of Information Technology, Control and Automation (IJITCA) Vol.2, No.3, July 2012.

Rumantir.2011. Agung Podomoro Bangun 11.200 Unit Apartemen Menengah. http://properti.kompas.com/read/2011/01/25/15101436/Agung.Podomoro.Bangun.11.200.Unit.Apartemen.Menengah

Sameto, Hudero. 2004. Proses Pembuatan Marketing Plan. Jakarta: PT. Gramedia Pustaka Utama

Santoso, Budi. 2007. Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu

Sartono, Bagus & Syafitri, Utami Dyah. 2010. Metode Pohon Gabungan: Solusi Pilihan Untuk Mengatasi Kelemahan Pohon Regresi dan Klasifikasi Tunggal. Forum Statistika dan Komputasi. ISSN: 0853-8115, 1-7

Schauffer,Steve&Tom Pinkerton, 2007, PT. Prestasi Pustakaraya, Jakarta

Simanungkalit, Panangian. 2010. Mengapa Memilih Apartemen.http://properti.kompas.com/read/2010/03/27/13184530/Mengapa.Memilih.Apartemen.




DOI: https://doi.org/10.31294/p.v16i2.773

ISSN2579-3500

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Dewi Sartika No. 289, Cawang, Jakarta Timur Telp : 021-8010836, ext. 202
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License