Performansi Klasifikasi Dosen Berprestasi Menggunakan Metode Naive Bayes Classifier

Indah Purnamasari, Karnita Afnisari

Abstract


Education is a very important thing for all individuals in this world. In a country, the education sector is the most noticed sector because it will greatly affect the progress of the country in the future. To achieve the expected level of education, professional educators are required. The professionalism of educators in Indonesia can be known through the achievement that the system has been established by the government. Educators who are achievers should be rewarded accordingly. It aims to motivate educators to grow high dedication to the realization of intelligent learners and foster a sense of pride in the profession. Educators in college are called lecturers. Achievement of lecturers achievement is a lecturer who implement Tridharma Higher Education that is Education, Research and Service to the community. However, the selection of lecturers with achievements in accordance with the requirements of the award system set by the government certainly is not an easy thing. Therefore, to assist the selection of outstanding lecturers in this study used data mining classification with the method of Naive Bayes Classifier with the results of this study achieves an accuracy of 91.67%

References


Karim, M., & Rahman, R. M. (2013). Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 06(04), 196–206. http://doi.org/10.4236/jsea.2013.64025

Kemenkeu. (2018). Republik indonesia, 3–6.

Malang, P. N. (2015). KLASIFIKASI TUGAS AKHIR UNTUK MENENTUKAN DOSEN PEMBIMBING MENGGUNAKAN NAÏVE BAYES CLASSIFIER ( NBC ), 7, 135–140.

Mufizar, T. (2015). Sistem Pendukung Keputusan Pemilihan Dosen Berprestasi Di STMIK Tasikmalaya Menggunakan Metode Simple Additive Weighting (SAW). Jurnal CSRID (Computer Science Research and Its Development Journal), 7(3), 155–167. http://doi.org/10.22303/csrid.7.3.2015.155-166

Patil, T. R. (2013). Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification. International Journal Of Computer Science And Applications, ISSN: 0974-1011, 6(2), 256–261. http://doi.org/ISSN: 0974-1011

Patmi Kasih, I. N. F. (2017). Sistem Bantu Pemilihan Dosen Pembimbing Tugas Akhir Berdasarkan Kategori Pilihan dan Keahlian Dosen menggunakan Naïve Bayes. Seminar Nasional Teknologi Informasi, Komunikasi Dan Aplikasinya, 04(SNATIKA), 62 – 68.

Ristekdikti (2017). Pedoman Pemilihan Dosen Berprestasi Kategori Sains Teknologi dan Sosial Humaniora Tahun Anggaran 2017

Somantri, O., Bersama, P. H., Wiyono, S., & Bersama, P. H. (2017). MODEL DATA MINING UNTUK KLASIFIKASI TINGKAT, (October).

Sumihar, P., & Efendi, I. (2015). Program Bantu Seleksi Awal Dosen Berprestasi Menggunakan Metode Iterative Dichotomiser 3, 07(02), 32–41.

Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and Techniques, Third Edition. Annals of Physics (Vol. 54). http://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C




DOI: https://doi.org/10.31294/p.v20i2.3788

Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Jl. Dewi Sartika No. 289, Cawang, Jakarta Timur Telp : 021-8010836, ext. 202
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License