PENCARIAN RUTE TERPENDEK PERJALANAN PROMOSI MARKETING MENGGUNAKAN ALGORITMA GENETIKA DAN ALGORITMA GREEDY

Dini Silvi Purnia, Dwiza Riana

Sari


                                                         ABSTRACT

A promotional team are doing promotions to schools in determining travel routes are still having trouble of having to find the shortest distance of the school will be visited. In the resolution of an efficient service, required a system with a method that can help in determining the fastest route. Method of comparison is a genetic algorithm and greedy algorithm for the genetic algorithm is a method by using variable speed in every way that affects travel time each way and take advantage of the natural selection process that is known as an evolutionary process, this process has the function of crossover, mutation and individual improvement, using processes are largely carried out randomly then produced the best solution in the process of finding the fastest route. Has made the application of genetic algorithm and greedy algorithm for determining the shortest route compose a promotional trip PMB AMIK BSI Tasikmalaya which generates the most optimal route. Has made a comparison between the genetic algorithm and greedy algorithm in the most optimal route search The comparison showed that the genetic algorithm is an algorithm that is more appropriate to determine the route of travel promotion than the greedy algorithm.

.

Keywords: genetic algorithm, greedy algorithm, shortest path


Teks Lengkap:

PDF

Referensi


Adipranata, R. (2007). Aplikasi Pencari Rute Optimum Pada Peta Guna Meningkatkan Efisiensi Waktu Tempuh Pengguna Jalan Dengan Metode A* Dan Best First Search. Journals Informatic , 2.

Ahmed, Z. H. (2010). Genetic Algorithm for the Traveling Salesman Problem using Sequential Constructive. International Journal of Biometrics & Bioinformatics (IJBB).

Al-Dulaimi B.F, A. (2008). Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA). World Academy of Science.

Dian. (2013). Algoritma Optimasi Untuk Penyelesaian Travelling Salesman Problem (Optimization Algorithm For Solving Travelling Salesman Problem). Jurnal Transformatika, 2.

Efendi, I. (2016, July thursday). Diambil kembali dari www.it-jurnal.com: http://www.it-jurnal.com/pengertian-algoritma-greedy/

Erma Susanti, D. A. (2014). Web SIG (SISTEM INFORMASI GEOGRAFIS) Untuk Fasilitas Umum (Studi Kasus di Kota Yogyakarta). Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014ISSN: 1979-911X (hal. 7). Yogyakarta: IST AKPRIND Yogyakarta.

Fitrah, A., F. Z. (2006). Penerapan Algoritma Genetika pada Persoalan Pedagang Keliling. Jurnal Program Studi Informatika.

Haupt, H. d. (2016, December 5). About Us: Digital Librari Unila. Diambil kembali dari Digital Librari UNILA: http://digilib.unila.ac.id/12925/129/BAB%20II.pdf.

Kustanto. (2011). Optimasi Rute Distribusi Tabung Gas Elpiji Menggunakan Algoritma Genetika. Yogyakarta: Universitas Gadjah Mada .

Suprayogi, D. M. (2014). Optimasi Rute Antar Jemput Laundry dengan Time Windows (TSPTW) Menggunakan Algoritma Genetika. Jurnal Mahasiswa PTIIK Universitas Brawijaya Volume 3, Number 12.

Tanupriya, A. V. (2013). Open Loop Travelling Salesman Problem using Genetic Algorithm. International Journal of Innovative Research in Computer and Communication Engineering.

Zukhri, Z. (2014). Algoritma Genetika Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi. Yogyakarta: Andi Publishing.




DOI: https://doi.org/10.31311/ji.v3i2.1310



 dipublikasikan oleh LPPM UBSI
Jl. Kamal Raya No. 18 Cengkareng, Jakarta Barat