Komparasi Algoritma C4.5, Naïve Bayes Dan Neural Network Untuk Klasifikasi Tanah

Amirul Mukminin, Dwiza Riana

Sari


Abstrak

Penentuan jenis tanah pada kedalaman tertentu untuk kebutuhan perencanaan pembangunan perumahan dilakukan berdasarkan data Cone Penetration Test. Tujuan penelitian ini untuk mengkomparasi Algoritma C4.5, Naive Bayes, and Neural Network sehingga ditemukan pemodelan yang terbaik untuk mengklasifikasikan tanah. Hasil dari penelitian ini didapatkan algoritma terbaik yaitu Algoritma C4.5. Algoritma C4.5 dalam klasifikasi dua kelas mencapai akurasi 98,45% dan AUC 0,981. Dalam klasifikasi tiga kelas C4.5 juga mencapai akurasi tertinggi (93,21%), demikian juga pada klasifikasi tujuh kelas (83,40%). Hasil penelitian ini menyimpulkan bahwa Algoritma C 4.5 dapat dijadikan pilihan dalam mengklasifikasi tanah untuk pembangunan perumahan.

 

Kata Kunci : Data Mining, Klasifikasi Tanah, C4.5, Naïve Bayes, Neural Network

 

Abstract

Determining the type of soil at a certain depth to the needs of residential development planning is done based on the data Cone Penetration Test. The purpose of this research to compare the data mining algorithm C4.5, Naive Bayes, and Neural Network to find the best modeling can be used for land classification. The results of this research, the best algorithm is C4.5. Algoritma C45 in binary-class classification accuracy reaches 98% and AUC 0,981. In the three-class classification C4.5 also have scored the highest accuracy (93.21%), as well as on the seven-class classification (83.40%). The results of this research concluded that the algorithm C 4.5 can be selected in classifying soil for residential development.

 

Keywords: Data mining, C4.5, Naïve Bayes, Neural Network, Soil Classification.


Kata Kunci


Data mining, C4.5, Naïve Bayes, Neural Network, Soil Classification.

Teks Lengkap:

PDF

Referensi


Akthar, F., & Hahne, C. (2012, August 24). Rapidminer 5 "Operator Reference". Retrieved from Rapid-I GmbH: www.rapid-i.com.

Alfisahrin, S. N. (2014). Komparasi Algoritma C4.5, Naive Bayes dan Neural Network Untuk Memprediksi Penyakit Jantung. Jakarta: Pascasarjana Magister Ilmu Komputer STMIK Nusa Mandiri.

Bandung, P. (2011). Penyelenggaraan, Retribusi IMB dan Retribusi Penggantian Cetak Peta. Bandung: Pemkot Bandung:Perda Kota Bandung Nomor 12 Tahun 2011.

Bhargavi, P., & Jyothi, D. (2011). Soil Classification Using Data Mining Techniques : A Comparative Study. International Journal of Engineering Trends and Technology-July to Aug Issue.

Bhattacharya, B., & Solomatine, D. (2005). Machine Learning in Soil Classification. Montreal, Canada.

Bowles, E. (1989). Sifat-sifat Fisis dan Geoteknis Tanah. Jakarta: PT. Erlangga.

Bramer, M. (2013). Pronciple of Data Mining Second Edition. London: Springer.

BSN. (2008). Cara Uji Penetrasi Lapangan Dengan Alat Sondir. Bandung: BSN : SNI 2827:2008.

Chapman, P. e. (2000). CRISP-DM 1.0 - Step-by-Step Data Mining Guide. . CRISP-DM Consortium.

Das, D. (2005). Fundamentals Of Geotechnical Engineering 2nd. Thomson USA.

Fawcett, T. (2005). An Introduction to ROC Analysis. Elsevier, 861.

Hamzah, A. (2012). Klasifikasi Teks Dengan Naive Bayes Classifier (NBC) Untuk Pengelompokan Teks Berita dan Abstract Akademis. Yogyakarta: Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III.

Han, J., & Kamber, M. (2006). Data Mining Consepts and Technoloques Second Edition. San Francisco: Diane Cerra.

Hardiyatmo, H. (2010). Analisis dan Perancangan Pondasi. Yogyakarta: Gadjah Mada University.

Jayasree, & Balan. (2013). A Review On Data Mining In Banking Sector. American Journal of Applied Sciences 10.

Jungermann, F. (2009). Information Extraction with Rapidmanner. In Proceedings Of The GSCL Symposium "Sprachtechnologie und eHumanities" (p. 50). Duisburg: Universitat Diusburg, Essen.

Kusumadewi, S. (2004). Membangun Jaringan Syaraf Tiruan Menggunakan Matlab & Exel Link. Yogyakarta: Graha Ilmu.

Larose, D. (2006). Data Mining Methods and Models. New Jersey: John Wiley and Son, Inc.

M.A. Shahin, J. M. (2008). Future Challenge for Artifical Neural Network Modelling in Geotechnical Engineering. International Association for Computer Methods and Advancees in Geomechanics (IACMAG). Goa-India.

Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook Second Edition. New York: Springer.

Moro, S., Cortez, P., & Laureano, R. S. (2013). A Data Mining Approach for Bank Telemarketing Using the rminer Package and R Tool. Lisbon: Business Research Unit Instituto Universitario de Lisboa.

Robertson, P. (2009). Soil Behaviour Type From The CPT : an update. California, USA: Gregg Drilling & Testing Inc.

Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining. New York: CRC Press.




DOI: https://doi.org/10.31311/ji.v4i1.1002

##submission.license.cc.by4.footer##

 dipublikasikan oleh LPPM UBSI
Jl. Kamal Raya No. 18 Cengkareng, Jakarta Barat