KLASIFIKASI SISWA SMK BERPOTENSI PUTUS SEKOLAH MENGGUNAKAN ALGORITMA DECISION TREE, SUPPORT VECTOR MACHINE DAN NAIVE BAYES

nurajijah nurajijah, Dwi Arum Ningtyas, Mochamad Wahyudi

Sari


Dropping out of school in Vocational High School students is an educational problem that must be found out the causes, so that it does not happen again in the future. The purpose of this study is to classify student data so that it can be predicted that students who have the potential to drop out of school use the Decision Tree, Naive Bayes and Support Vector Machine algorithms. Then determine which algorithm is the best. The results showed that the Support Vector Machine algorithm was the best with an accuracy of 93.77% and Area Under the Curve of 0.990.

Kata Kunci


Klasifikasi Data Mining, Siswa Putus Sekolah, Decision Tree, Naive Bayes, Support Vector Machine

Teks Lengkap:

PDF

Referensi


Abu-Oda, G. S., & El-Halees, A. M. (2015). Data Mining In Production Management And Manufacturing. Annals Of Daaam And Proceedings Of The International Daaam Symposium, 5(1), 827–828. Https://Doi.Org/10.2507/Daaam.Scibook.2009.11

Darmawan Wachid. (2017). Algoritma Klasifikasi Data Mining Untuk Prediksi Status Mhasiswa Menggunakan Algortima Decision Tree C4.5. Ic-Tech, Xii(1), 15–22.

Fiska, R. R. (2017). Penerapan Teknik Data Mining Dengan Metode Support Vector Machine (Svm) Untuk Memprediksi Siswa Yang Berpeluang Drop Out (Studi Kasudi Smkn 1 Sutera). Jaringan Sistem Informasi Robotik, 1(01), 42–51.

Giovani, R. A., Mudjihartono, P., & Pranowo, P. (2011). Sistem Pendukung Keputusan Prediksi Kecepatan Studi Mahasiswa Menggunakan Metode Id3. Jurnal Buana Informatika, 2(2), 102–108. Https://Doi.Org/10.24002/Jbi.V2i2.313

Jiawei, H., Kamber, M., Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts And Techniques. In San Francisco, Ca, Itd: Morgan Kaufmann. Https://Doi.Org/10.1016/B978-0-12-381479-1.00001-0

Kuntoro, R. K., & Sudarwanto, R. (2017). Prediction Of Student Performance Using Decision Tree C 4 . 5 Algorithm. 214–219.

Kurniawan, M. Y., & Rosadi, M. E. (2017). Optimasi Decision Tree Menggunakan Particle Swarm Optimization Pada Data Siswa Putus Sekolah. Jtiulm, 2(1), 15–22.

Marlina, L., Lim, M., & Utama Siahaan, A. P. (2016). Data Mining Classification Comparison (Naïve Bayes And C4.5 Algorithms). International Journal Of Engineering Trends And Technology, 38(7), 380–383. Https://Doi.Org/10.14445/22315381/Ijett-V38p268

Maulana, M. A., Setyanto, A., & Kurniawan, M. P. (2018). Analisis Sentimen Media Sosial Universitas Amikom. 7–12.

Nofriansyah, D. (2017). Algoritma Data Mining Dan Pengujian. Yogyakarta: Deepublish.

Noviriandini, A., & Nurajijah, N. (2019). Analisis Kinerja Algoritma C4.5 Dan Naïve Bayes Untuk Memprediksi Prestasi Siswa Sekolah Menengah Kejuruan. Jitk (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(1), 23–28. Https://Doi.Org/10.33480/Jitk.V5i1.607

Nurajijah, N., & Riana, D. (2019). Algoritma Naïve Bayes, Decision Tree, Dan Svm Untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah. Jurnal Teknologi Dan Sistem Komputer, 7(2), 77. Https://Doi.Org/S10.14710/Jtsiskom.7.2.2019.77-82

Pattipeilohy, W. F., Wibowo, A., & Utari, D. R. (2017). Pemodelan Dan Prototipe Sistem Informasi Untuk Prediksi Pembaharuan Polis Asuransi Mobil Menggunakan Algoritma C.45. Seminar Nasional Teknologi Dan Informatika 2017 (Snatif), (October), 791–799. Retrieved From Https://Www.Neliti.Com/Id/Publications/173500/Pemodelan-Dan-Prototipe-Sistem-Informasi-Untuk-Prediksi-Pembaharuan-Polis-Asuran

Puspita, A., & Wahyudi, M. (2015). Algoritma C4.5 Berbasis Decision Tree Untuk Prediksi Kelahiran Bayi Prematur. Konferensi Nasinal Ilmu Pengetahuan Dan Teknologi (Knit), 1(1), 97–102. Retrieved From Http://Konferensi.Nusamandiri.Ac.Id/Proceeding/Index.Php/Knit/Article/View/175

Putri, R. T. N. (2017). Faktor Penyebab Siswa Putus Sekolah Di Sekolah Menengah. Jurnal Hanata Widya, 6(8), 70–82.

Villwock, R., Appio, A., & Andreta, A. A. (2015). Educational Data Mining With Focus On Dropout Rates. International Journal Of Computer Science And Network Security, 15(3), 17–23.

Wahyuni, S., Saputra, K., & Perangin-Angin, M. I. (2017). Implementasi Rapidminer Dalam Menganalisa Data Mahasiswa Drop Out. 10, 2013–2016. Https://Doi.Org/10.3969/J.Issn.1002-5006.2017.06.012




DOI: https://doi.org/10.31294/jki.v7i2.6839

DOI (PDF): https://doi.org/10.31294/jki.v7i2.6839.g3746

p-ISSN 2339-1928

e-ISSN 2579-633X



Dipublikasikan oleh LPPM Universitas Bina Sarana Informatika

Kampus Pontianak

Jl. Abdurrahman Saleh No.18 A Pontianak, Kalimantan Barat 78124

Telp : (0561)583924, Fax : (0561) 583934

Email : jurnalkhatulistiwainformatika@bsi.ac.id

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

 

Jurnal Khatulistiwa Informatika Indexed by:

Image result for logo index sinta