Komparasi Algoritma Naive Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Pengguna Busway

Riska Aryanti, Atang Saepudin, Eka Fitriani, Rifky Permana, Dede Firmansyah Saefudin

Abstract


Congestion major cities in Indonesi caused by the proliferation of the use of private vehicles. Some expressing he thinks about busway user through the social media and other web site, This opinion can be used as a sentiment analysis to see if the user busway proposes a review of positive or negative. The results of the analysis sentiment can help in the sight of and evaluate the use of busway, also expected to improve and transjakarta facility from so they tend to have an opinion positive. Based on the results of the analysis, sentiment it is hoped people will switch to using the will of course will reduce congestion. In the study also added the stages preprocesing by using the framework gataframework to complete the process that cannot be done on tools rapidminer. The methodology that was used in this research was it is anticipated that analysis the sentiment of the by the application of an genetic algorithm for an election features with an algorithm naive bayes. From the results of the testing to the case in research it is found that classification algorithm naive bayes based genetic algorithm having the kind of accuracy that good enough 88,55 % and value of auc reached 0,813 % with the level of the diagnosis classifications good. So that in this research classification algorithm naive bayes based genetic algorithm can be recommended as algorithms classifications good enough to analyze the busway user sentimen. Based on analysis is expected to private transport users will switch to using the busway will reduce congestion

Full Text:

PDF

References


Govindarajan, M. (2013). Sentiment Analysis of Movie Reviews using Hybrid Method of Naive Bayes and Genetic Algorithm. International Journal of Advanced Computer Research, 3(13), 139–145.

Ipmawati, J., Kusrini, & Luthfi, E. T. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Ijns.Org Indonesian Journal on Networking and Security, 6(1), 28–36.

Kristiayanti, D. A., Umam, A. H., Wahyudi, M., Amin, R., & Marlinda, L. (2018). Comparison of SVM & Naïve Bayes Algorithm for Sentiment Analysis Toward West Java Governor Candidate Period 2018-2023 Based on Public Opinion on Twitter. In International Conference on Cyber and IT Service Management (CITSM 2018) (pp. 3–8). Medan.

Li, L., Bai, Y., Song, Z., Chen, A., & Wu, B. (2018). Public transportation competitiveness analysis based on current passenger loyalty. Transportation Research Part A: Policy and Practice, 113(April), 213–226. https://doi.org/10.1016/j.tra.2018.04.016

Mira, A., Izzaty, K., Mubarok, M. S., Informatika, F., Bandung, U. T., & Information, M. (2018). Klasifikasi Multi-Label pada Topik Ayat Qur’an Bahasa Inggris Menggunakan Tree Augmented Naive Bayes ( TAN ), 5(1), 1–6.

Muthia, D. A. (2016). Opinion Mining Pada Review Buku Menggunakan Algoritma Naive Bayes. Jurnal TEKNIK KOMPUTER, II(1), 1–8. Retrieved from http://ejournal.bsi.ac.id/ejurnal/index.php/jtk/article/view/357

Novantirani, A., Sabariah, M. K., & Effendy, V. (2015). Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine (Vol. 2, pp. 1177–1183).

Nugroho, M. F., & Wibowo, S. (2017). Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer UNAKI Semarang Menggunakan Algoritma Naive Bayes. Jurnal Informatika Upgris, 3(1), 63–70.

Wahyudi, M., & Putri, D. A. (2016). Algorithm Application Support Vector Machine With Genetic Algorithm Optimization Technique for Selection Features for the Analysis of Sentiment on Twitter. Journal of Theoretical and Applied Information Technology, 84(3), 321–331. Retrieved from www.jatit.org

Wahyuni, E. S. (2016). Penerapan metode seleksi fitur untuk meningkatkan hasil diagnosis kanker payudara. Jurnal SIMETRIS, 7(1), 283–294




DOI: https://doi.org/10.31294/jtk.v5i2.5406

Copyright (c) 2019 Riska Aryanti, Atang Saepudin, Eka Fitriani, Rifky Permana, Dede Firmansyah Saefudin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License