Analisis Algoritma Klasifikasi C 4.5 Untuk Memprediksi Keberhasilan Immunotherapy Pada Penyakit Kutil
Abstract
Maintaining skin health is one thing that is also needed. Not only health from inside, health from the outside must also be considered. There are so many skin problems that arise in the human body. Wart disease is characterized by small bumps on the surface of the skin which are generally caused by the Human Papiloma Virus (HPV) virus. One technique for treating wart disease is immunotherapy, this method is a treatment by increasing the immune system to deal with wart disease. Clinical predictions are growing very rapidly by adopting computer science and information technology in managing health and drug data, this clinical prediction can be produced from processing using data mining methods. Data mining is a popular method used to explore patterns or knowledge from large data stacks. C 4.5 algorithm which is one of the decision tree induction algorithms is also a method of data mining algorithms used to classify. This study aims to predict the success rate of immunotherapy treatment methods on wart disease with algorithm C 4.5 using RapidMiner. From the study it was known that the accuracy rate for processing immunotherapy data on wart disease to predict its success using the C 4.5 algorithm of 74.07%.
Full Text:
PDFReferences
Amalia, H & Evicienna. (2017). Komparasi Metode Data Mining Untuk Penentuan Proses Persalinan Ibu Melahirkan. Jurnal Sistem Informasi (Journal of Information Systems). 2/13 (2017), 103-109. Retrievd from http://jsi.cs.ui.ac.id/index.php/jsi/article/view/545
Yunus, M., Dahlan, H S., Santoso, P B. (2014). SPK Pemilihan Calon Pendonor Darah Potensial dengan Algoritma C4.5 dan Fuzzy Tahani. Jurnal EECCIS Vol. 8, No. 1. Retrieved from http://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/235
Haryati, S., Sudarsono, A., Suryana, E. (2015). Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu). Jurnal Media Infotama Vol. 11 No. 2. Retrieved from https://jurnal.unived.ac.id/index.php/jmi/article/view/260
Supriyatna, A., Mustika, W P. (2018). Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil. Jurnal Sains Komputer Informatika (J-SAKTI) Volume (2) No.2. Retrieved from https://www.researchgate.net/publication/327870768_Komparasi_Algoritma_Naive_bayes_dan_SVM_Untuk_Memprediksi_Keberhasilan_Imunoterapi_Pada_Penyakit_Kutil
Shah, A N., Patel, D., Ravishankar, V. (2016). Measles, mumps and rubella vaccine as an intralesional immunotherapy in treatment of warts. International Journal of Research in Medical Sciences Shah AN et al. Int J Res Med Sci. 2016 Feb;4(2):472-476. Retrieved from https://www.msjonline.org/index.php/ijrms/article/view/522
Masyhuri, M. Z. (2008). Metodologi Penelitian Pendekatan Praktis dan Aplikatif. Bandung: PT. Refika Aditama.
DOI: https://doi.org/10.31294/jtk.v5i2.4851
Copyright (c) 2019 Ady Hermawan, Ardi Ramadhan Sukma, Riqardi Halfis
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2442-2436 (print), and 2550-0120