Klasifikasi Channel Youtube Indonesia Menggunakan Algoritma C4.5

Ardi Ramadhan Sukma, Riqadri Halfis, Ady Hermawan

Abstract


In the current era, social media is very influential in our lives whether from Instagram, Twitter, Youtube, or others. One of them is social media Youtube which has a very important role for the public, even though public figures. Youtube provides very interesting content for those who have a channel because they have an assessment of Video Upload, Subscriber, Video Viewers. Even Youtube provides an opportunity for Youtube channels that install Google AdSense to be paid to the owner of the Channel. Youtube Channel ratings can be rated from Video Upload, Subscriber, Video Viewers. From the Youtube data processing data can be done. One data processing technique that can be used in the process is classification. Classification is a data processing technique that divides objects into classes according to the desired number of classes. And using the C4.5 algorithm in the classification process. Who can determine the Youtube Channel especially Indonesia with a Very Good or Good ratio


Full Text:

PDF

References


Kalpesh Adhartao, Aditya Gaykar, Amiraj Dhawan, Rohit Jha and Vipul Honrao (2013). Predicting Students’ Performance Using ID3 And C4.5 Classfication Algorithms, International Journal of Data Mining & Knowledge Management Process. Departement of Computer Engineeing(India),Vol.3, No.5, pp. 39-52.

I.A Ganiyu (2016). Data Mining : A Prediction for Academic Performance Improvement of Science Students using Classification, International Journal of Information and Communication Technelogy Research, Vol. 6, No. 4, ISSN 2223-4985. (Vol. 54).

Seema, Jitendra Agrawal, Sanjeev Sharma (2013). Classification Through Machine Learning Technique: C4.5 Algorithm based on Various Entropies, International Journal of Computer Application, Vol. 82, No. 16, pp 20-27.

Mardi Turnip, Charles Wijaya (2016). Penerapan Algoritma C4.5 untuk Penetuan Tingkat Konsumsi Konsumen pada Medan Solusindo, Jurnal Senopati (Seminar Nasional Pascasarjana Teknik Informatika), Vol. 1, No. 1, pp. 34-42,p-ISSN 2528-2832, e-ISSN 2549-7820.

Aradea, Satriyo A., Ariyan Z., Yaliana A. (2011). Penerapan Decision Tree Untuk Penentuan Pola Data Penerimaan Mahasiswa Baru, Jurnal Penelitian Sitrotika, Vol. 7, No. 1, 2011, ISSN 1693-9670.

SOCIALBLADE , Track User Statistic, website https://socialblade.com/




DOI: https://doi.org/10.31294/jtk.v5i1.4823

ISSN2550-0120

 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License