Comparative Analysis of Machine Learning Model Performance for Classification of Edible or Non-edible Mushrooms

Omar Pahlevi, Sriyadi Sriyadi

Abstract


Mushrooms provide significant nutritional benefits and play a crucial role in the global food industry. However, not all mushroom species are safe for consumption, as some contain toxic compounds that can cause severe poisoning and even death. Accurate identification is essential to differentiate between edible and poisonous mushrooms. Traditional classification methods relying on manual morphological identification are often inaccurate, especially when toxic and edible mushrooms have similar physical characteristics. Machine Learning (ML) technology offers an innovative solution to enhance classification accuracy and improve safety in mushroom consumption. This study compares the performance of three major classification algorithms—Random Forest, Logistic Regression, and Naïve Bayes—using an open dataset from Kaggle. The analysis was conducted using the KNIME platform, evaluating the algorithms based on accuracy, sensitivity, and computational efficiency. The results indicate that Random Forest achieved the highest accuracy at 98.90%, followed by Logistic Regression at 69.67% and Naïve Bayes at 55.46%. These findings highlight the superiority of ensemble methods in classification tasks. This research contributes to the development of a reliable ML-based mushroom classification system. However, limitations remain, such as the exclusion of other high-performance algorithms like Support Vector Machine and Artificial Neural Networks. Future studies may incorporate optimization techniques to improve model performance. Additionally, implementing this classification system into mobile or web-based applications could provide broader benefits by enabling quick identification of mushrooms, minimizing health risks, and improving consumer confidence in mushroom safety.

Keywords


Mushroom; Machine Learning; Random Forest; Naïve Bayes; Logistic Regression

Full Text:

PDF

References


Arslan, M., Azam, M., Ali, M., Hashmi, M. U., & Kousar, A. (2024). A Comparative Study of Machine Learning Methods for Optimizing Mushroom Classification. 08(01).

Ernanda, R., & Sumbari, C. (2021). The Effect of Individual Environmental and Entrepreneurial Behavior Factors on Performance of Oyster Mushroom Farming in Payakumbuh. Jurnal Galung Tropika, 10(1), 98–109.

Fathurrohman, R., S, M. F., Cahyono, S. M., & Abdillah, D. F. (2024). Data Mining Pada Klasifikasi Jamur Menggunakan Algoritma C .45 Berdasarkan Karakteristik Morfologi Mushroom. 4(1), 29–38.

Frencis Matheos Sarimole, & Ridad Diadi, R. (2022). Klasifikasi Jenis Jamur Menggunakan Ekstraksi Fitur Glcm Dan K-Nearest Neighbor ( Knn ). Jurnal Informatika Teknologi Dan Sains, 4(3), 286–290. https://doi.org/10.51401/jinteks.v4i3.1996

Haksoro, E. I., & Setiawan, A. (2021). Pengenalan Jamur yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning pada Convolutional Neural Network. ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 5(2), 81–91.

Harneni, L., Jauhari, C. K., Hia, R. R., P, N. K., M, M. A., H, M. Z., N, M. E. A., Rizal, M., Lestari, M., & Septiani, N. W. P. (2024). Klasifikasi Jamur yang Dapat Dikonsumsi Berdasarkan Citra Menggunakan Pre-Trained Model Inception V3. JRKT (Jurnal Rekayasa Komputasi Terapan), 04(02), 169–176.

Hayami, R., Soni, & Gunawan, I. (2022). Klasifikasi Jamur Menggunakan Algoritma Naïve Bayes. Jurnal CoSciTech (Computer Science and Information Technology), 3(1), 28–33. https://doi.org/10.37859/coscitech.v3i1.3685

Made Susun, N. M. S. P., & Darsini, N. (2023). Mansoa alliacea and Allamanda cathartica Extract Formula for The Control of Stem Rot Disease on Soybean Plants. Jurnal Fitopatologi Indonesia, 19(2), 57–62. https://doi.org/10.14692/jfi.19.2.57-62

Özaltun, B., & Sevindik, M. (2020). Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. The European Research Journal, 6(6), 539–544. https://doi.org/10.18621/eurj.524149

Rahmadhani, U. S., & Marpaung, N. L. (2023). Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(2), 169–173. https://doi.org/10.30591/jpit.v8i2.5229

Rodríguez-Fernández, R., Fernández-Gómez, Á., Mejuto, J. C., & Astray, G. (2024). Machine Learning Models to Classify Shiitake Mushrooms (Lentinula edodes) According to Their Geographical Origin Labeling. Foods, 13(17). https://doi.org/10.3390/foods13172656

Samir, M., Darwis, H., Umar, F., & Korespondensi, P. (2023). Fourier Descriptor Pada Klasifikasi Daun Herbal Menggunakan Support Vector Machine Dan Naive Bayes Fourier Descriptor on Classification of Herbal Leaves Using Support Vector Machine and Naive Bayes. 10(6), 1205–1212. https://doi.org/10.25126/jtiik.2023107309

Villarroel Ordenes, F., & Silipo, R. (2021). Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. Journal of Business Research, 137, 393–410. https://doi.org/https://doi.org/10.1016/j.jbusres.2021.08.036

Yohannes, Udjulawa, D., & Sariyo, T. I. (2022). Klasifikasi Jenis Jamur Menggunakan Metode SVM dengan Fitur HSV dan HOG. PETIR: Jurnal Pengkajian Dan Penerapan Teknik Informatika, 15(1), 113–120. https://doi.org/10.35957/mdp-sc.v2i1.4451

Zatadinia, N., & Bhakti, H. D. (2024). Identifikasi Jamur yang Dapat Dikonsumsi dan Beracun Menggunakan Metode Logistic Regression. JATI (Jurnal Mahasiswa Teknik Informatika), 8(6), 11780–11785.




DOI: https://doi.org/10.31294/jtk.v11i2.26007

Copyright (c) 2025 Omar Pahlevi, Sriyadi Sriyadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ISSN: 2442-2436 (print), and 2550-0120


 dipublikasikan oleh LPPM Universitas Bina Sarana Informatika Jakarta

Jl. Kramat Raya No.98, Kwitang, Kec. Senen, Kota Jakarta Pusat, DKI Jakarta 10450
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License