KLASTERING DATA MENGGUNAKAN ALGORITMA DYNAMIC K-MEANS
Abstract
to have problems determining the initial partition number of
clusters (k) determining the initial value that is different may
produce different cluster groups. To solve the problem of the
sensitivity of the initial partition number of clusters in K-means
algorithm, the proposed algorithm dynamic cluster. The result
showed that the Dynamic K-means algorithm, can produce quality
cluster that is more optimal than the K-means.
Intisari— Salah satu kekurangan algoritma K-means yaitu
mempunyai masalah sensitif terhadap penentuan partisi awal
jumlah cluster(k) penentuan nilai awal yang berbeda mungkin
dapat menghasilkan kelompok cluster yang berbeda pula. Untuk
menyelesaikan masalah sensitifitas partisi awal jumlah cluster
pada algoritma K-means, maka diusulkan algoritma cluster
dinamik. Hasil percobaan menunjukan bahwa algoritma
Dynamic K-means, dapat menghasilkan kualitas cluster yang
lebih optimal dibandingkan dengan K-means.
Kata kunci : Segmentasi Pelanggan, K-Means, quality cluster
Full Text:
PDFReferences
Adrian, R. Prepaid Telecom Customers Segmentation Using
The K-Mean, The Annals of The University of Oradea
Economic Sciences, 1112–1118. 2012
Aggarwal, N., & Aggarwal, K. Comparative Analysis of kmeans and Enhanced K-means clustering algorithm for data
mining, International Journal of Scientific & Eninnering
Research, 3(3). 2012.
Chen, Y., Zhang, G., Hu, D., & Fu, C. Customer segmentation
based on survival character. Journal of Intelligent
Manufacturing, IEEE 18(4), 513–517. 2007
Deelers, S., & Auwatanamongkol, S. Enhancing K-Means
Algorithm with Initial Cluster Centers Derived from Data
Partitioning along the Data Axis with the Highest Variance,
World Academy of Science, Engineering and Technology,
(December), 323–328. 2007.
Lin, B., & Jones, C. Customer Segmentation Using K-Means
Clustering and Decision Tree: A Research Review, SouthWest
Decision Sciences. 2010
Maulik, U., & Bandyopadhyay, S. Performance Evaluation of
Some Clustering Algorithms and Validity Indices, IEEE
Transaction On Pattern Analysis And Machine Intelligence,
(12), 1650–1654. 2002.
Myatt, G. J. Making Sense of Data: A Practical Guide to
Exploratory Data Analysis and Data Mining. Hoboken: John
Willey & Sons. 2007.
Varcellis, Carlo. Business Intelligence: Data Mining and
Optimization for Decision Making. Southrn Gate, Chichester,
West Sussex: John Willey & Sons, Ltd. 2009.
Witten, I. H., Frank, E., & Hall, M. A. Data Mining: Practical
Machine Learning and Tool. Burlington: Morgan Kaufmann
Publisher.2011.
Wu, Xindong & Kumar, Vipin. The Top Ten Algorithms in
Data Mining. London: CRC Press. 2009.
Yi, B., Qiao, H., Yang, F., & Xu, C. An Improved Initialization
Center Algorithm for K-Means Clustering. International
Conference on Computational Intelligence and Software
Engineering, IEEE (1), 1–4. 2010.
Zhang, C., & Fang, Z. An Improved K-means Clustering
Algorithm Traditional K-mean Algorithm, Journal of
Information & Computational Science, 1, 193–199. 2013.
DOI: https://doi.org/10.31294/jtk.v1i2.259
Copyright (c) 2015 Widiarina .
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2442-2436 (print), and 2550-0120