SEGMENTASI CITRA DAN PEWARNAAN SEMU PADA FOTO HASIL RÖNTGEN
Abstract
reading techniques. It takes skill and experience of the medical
field to understand the information that is contained in a Röntgen
photo results, so it is quite difficult for the lay reader. Image
processing can be done to help ease the reading of the Röntgen
photo result. The assumptions used are restrictions that need to be
made apparent to the components of a Röntgen photo result. This
can be done by performing the pixels classification (segmentation)
in a Röntgen photo result. Mode Threshold method is used as a
method to perform the classification process of pixels in a Röntgen
photo result. Furthermore, from the results of image segmentation
obtained, made the process of pseudo colouring. The final results
obtained, is expected to clarify and make it easier to dig up
information contained in a Röntgen photo result, without the need
for image visualization tools and high medical expertise.
Intisari—Hasil foto Röntgen merupakan jenis citra diam yang
memiliki keterbatasan dalam metode pembacaannya.
Dibutuhkan keahlian dan pengalaman dibidang medis untuk
memahami informasi yang terkandung didalamnya, tentunya hal
ini menyulitkan bagi pembaca awam. Pengolahan citra
diperlukan untuk memudahkan pembacaan hasil foto Röntgen.
Asumsi yang digunakan adalah pembatasan yang perlu dibuat
jelas untuk komponen hasil foto Röntgen. Hal ini dilakukan
dengan memberlakukan klasifikasi (segmentasi) pixel dalam
hasil foto Röntgen. Metode Mode Threshold digunakan untuk
membentuk proses klasifikasi pixel tersebut. Selanjutnya, dari
keluaran proses segmentasi citra dilanjutkan dengan pemberian
warna semu. Hasil akhir yang diperoleh diharapkan lebih
memperjelas dan memudahkan proses penggalian informasi
yang terkandung didalam hasil foto Röntgen, tanpa dibutuhkan
alat bantu visualisasi citra dan keahlian yang tinggi.
Kata Kunci—Segmentasi Citra, Hasil Foto Röntgen, Metode
Mode Threshold, Pewarnaan Semu.
Full Text:
PDFReferences
Acharya, Tinku., Ray, Ajoy K. Image Processing; Principles and
Applications. New Jersey: John Wiley & Sons. 2005.
Arbelaez, Pablo. Contour Detection and Hierarchical Image
Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI). 2011.
Basuki, Ahmad., et al. Pengolahan Citra Digital Menggunakan Visual
Basic. Yogyakarta: Penerbit Graha Ilmu. 2005.
Gonzalez, Rafael. C., & Woods, R. E. Digital Image Processing.
Boston: Addison - Wesley Publishing. 1992
Gupta, Madan. M., & Knopf, George K. (1993). Neuro-Vision System;
Principles and Applications. New York: IEEE Press. 1993.
Jain, Ramesh dkk. Machine Vision, McGraw-Hill, Inc., New York.
Li, Chunming., et al. A Level Set Method for Image Segmentation in
the Presence of Intensity Inhomogeneities With Application to MRI.
IEEE Transactions On Image Processing, Vol. 20, No. 7, July 2011 .
Munir, Rinaldi. Pengolahan Citra Digital dengan Pendekatan
Algoritmik. Bandung: Penerbit Informatika. 2004.
Pitas, Ioannis. Digital Image Processing Algorithms. Prentice Hall
International.1993.
Pratt, William. K. Digital Image Processing, 3rd Edition. New York:
John Wiley & Sons. 2001.
Rinaldy, Wendy. Analisa Operator Pendeteksi Edge dengan Teknik
Spasial Domain. Jakarta: Jurusan Teknik Elektro, Fakultas Teknik Universitas Indonesia. 1997.
Rosenfeld, Azriel. Computer Vision: a source of models for biological
visual process?. IEEE Engineering in Medicine and Biology Society.
Biomedical Enggineering, IEEE Transactions on Volume 36. P.93-96.
Siedband, Melvin P. Medical Imaging Systems. In John G. Webster
(editors), Medical Instrumentation. New York: John Wiley&Sons.
Sigit, Riyanto., et al. Step By Step Pengolahan Citra Digital, .
Yogyakarta: Penerbit Andi. 2006.
DOI: https://doi.org/10.31294/jtk.v1i2.255
Copyright (c) 2015 Ade Surya Budiman
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN: 2442-2436 (print), and 2550-0120